Mochima_2_2LUPM.ipynb 668 KB
Newer Older
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
5
   "execution_count": 1,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
6
   "metadata": {
7
    "collapsed": false
NUNEZ Arturo's avatar
NUNEZ Arturo committed
8
9
10
11
12
13
14
15
16
17
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
18
   "execution_count": 2,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
19
   "metadata": {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
20
    "collapsed": true
NUNEZ Arturo's avatar
NUNEZ Arturo committed
21
22
23
24
25
26
27
28
29
   },
   "outputs": [],
   "source": [
    "from scipy.stats import rv_continuous\n",
    "from scipy.special import gamma\n",
    "import numpy as np\n",
    "import emcee\n",
    "from mpl_toolkits.axes_grid1 import make_axes_locatable\n",
    "from numpy import exp, sqrt\n",
30
    "from scipy.integrate import quad, dblquad, simps\n",
31
32
33
    "from scipy.stats import rv_continuous\n",
    "from scipy.special import gamma\n",
    "from scipy.interpolate import interp1d\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    "from scipy.integrate import quad\n",
    "import scipy.optimize as optimize\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib as mpl\n",
    "from sklearn.neighbors import KDTree\n",
    "import sys\n",
    "import lmfit\n",
    "from py_unsio import *\n",
    "import pymc\n",
    "import os\n",
    "from pymodelfit import FunctionModel1DAuto\n",
    "import wkbl\n",
    "from mpl_toolkits.mplot3d import axes3d\n",
    "from matplotlib import cm\n",
    "import wkbl.astro.nbody_essentials as nbe\n",
    "import cfalcon\n",
    "CF =cfalcon.CFalcon()\n",
    "import iminuit\n",
    "from iminuit import Minuit, describe, Struct\n",
    "import probfit\n",
    "import warnings\n",
    "from matplotlib.colors import LogNorm\n",
    "warnings.filterwarnings('ignore')"
   ]
  },
59
60
61
62
63
64
65
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# DMO"
   ]
  },
NUNEZ Arturo's avatar
NUNEZ Arturo committed
66
67
  {
   "cell_type": "code",
68
   "execution_count": 3,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
69
   "metadata": {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
70
    "collapsed": false
71
72
73
74
75
76
77
78
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "loading Dark matter..\n",
      "centering\n",
79
      "done r200 = 227.9296875\n"
80
81
82
83
     ]
    }
   ],
   "source": [
84
    "path = \"/data/OWN/DMO/mochima2_Z5/output_00041\"\n",
85
86
87
88
89
90
91
    "#path = \"/media/arturo/ARTUROTECA/OUTPUTS/HaloB/output_00417\"\n",
    "myDMO = wkbl.Galaxy_Hound(path)\n",
    "print \"centering\"\n",
    "zoom_reg = np.where(myDMO.dm.mass == myDMO.dm.mass.min())\n",
    "nucenter = nbe.real_center(myDMO.dm.pos3d[zoom_reg], myDMO.dm.mass[zoom_reg])\n",
    "myDMO.center_shift(nucenter)\n",
    "myDMO.r_virial(600)\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
92
    "print \"done r200 = {0}\".format(myDMO.r200)\n",
93
94
95
    "myDMO.redefine(2.5)\n",
    "ok,myDMO.dm.rho,_= CF.getDensity(np.array(myDMO.dm.pos3d.reshape(len(myDMO.dm.pos3d)*3),dtype=np.float32), myDMO.dm.mass)\n",
    "\n"
96
97
98
99
   ]
  },
  {
   "cell_type": "code",
100
   "execution_count": 4,
101
102
103
104
105
106
107
108
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
109
110
111
      "3.032886e+16\n",
      "-3.972665162831405e+16\n",
      "0.23656138189405296\n"
112
113
114
115
     ]
    }
   ],
   "source": [
116
    "\"\"\"\n",
117
    "K = np.sum(myDMO.dm.mass*(myDMO.dm.v)**2)\n",
118
119
    "print K\n",
    "myGkm = 6.673e-11*(1e-3**3)*myDMO.p.msuntokg#km^ 3 Msun^-1 s^-2\n",
120
121
122
    "r_sorted = np.argsort(myDMO.dm.r)\n",
    "M_i = np.cumsum(myDMO.dm.mass[r_sorted]) - myDMO.dm.mass[r_sorted]\n",
    "m_i = myDMO.dm.mass[r_sorted]\n",
123
124
125
126
127
    "r_i = myDMO.dm.r[r_sorted]*(1e-2*myDMO.p.pctocm)# in km\n",
    "U =  np.sum(-myGkm*M_i*m_i/r_i)\n",
    "print U\n",
    "print K/U + 1\n",
    "\"\"\""
128
129
   ]
  },
NUNEZ Arturo's avatar
NUNEZ Arturo committed
130
131
  {
   "cell_type": "code",
132
   "execution_count": 4,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
133
134
135
136
137
138
139
140
141
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def abg_logprofile(x,p_s,r_s,al,be,ga):\n",
    "    x = 10**x\n",
    "    power =  (be - ga) / (al)\n",
    "    denominator = ((x/(r_s))**ga) * ((1 + (x / (r_s))**al)**power)\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
142
143
    "    return np.log10(10**p_s / denominator)\n",
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
144
145
146
147
148
149
150
151
152
153
    "def abg_profile(x,po,r_s,al,be,ga):\n",
    "    power =  (be - ga) / al\n",
    "    denominator = ((x/r_s)**ga) * ((1 + (x / r_s)**al)**power)\n",
    "    return (10**po) / denominator"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
154
    "## Mass fit"
NUNEZ Arturo's avatar
NUNEZ Arturo committed
155
156
157
158
   ]
  },
  {
   "cell_type": "code",
159
   "execution_count": 5,
160
161
162
163
164
165
166
167
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
168
      "0.8373210354860829\n"
169
170
171
172
173
174
175
176
177
178
179
180
     ]
    }
   ],
   "source": [
    "Pcrit = myDMO.dm._p.rho_crit\n",
    "Mdm = myDMO.dm.mass.min()\n",
    "myradiuses = myDMO.dm.r[np.argsort(myDMO.dm.r)]\n",
    "tabN = np.cumsum(np.ones(len(myradiuses)))[1:]\n",
    "myradiuses = myradiuses[1:]\n",
    "Rp03 = np.sqrt(200/64.) * np.sqrt(4 * np.pi * Pcrit * tabN / 3. / Mdm ) * (myradiuses**1.5)/ np.log(tabN) \n",
    "val =0.6\n",
    "R_P03 = myradiuses[ np.where(Rp03 > val) ][0]\n",
181
182
    "\n",
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
183
    "print R_P03\n",
184
    "hsml= 0.190# R_P03\n",
185
    "# R array logarithmic Bining\n",
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    "r_p = np.logspace(np.log10(0.2*hsml),np.log10(hsml),15)\n",
    "# histogram of dm particles per logarithmic bin\n",
    "n_dm,r = np.histogram(myDMO.dm.r,bins=r_p)\n",
    "# edges of bins\n",
    "r1,r2 =r[:-1],r[1:]\n",
    "# shell's volume\n",
    "vol = 4.* np.pi * ((r2**3)-(r1**3)) / 3.\n",
    "r_size = r_p[1:]-r_p[:-1]\n",
    "# density per shell\n",
    "profileDMO_in = n_dm*myDMO.dm.mass.min()/vol\n",
    "# center of bins\n",
    "r_in = (r_p[:-1]+r_p[1:])/2.\n",
    "\n",
    "\n",
    "# R array logarithmic Bining\n",
201
    "r_p = np.logspace(np.log10(hsml),np.log10(2.5*myDMO.r200),150)\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
202
    "# histogram of dm particles per logarithmic bin\n",
203
    "n_dm,r = np.histogram(myDMO.dm.r,bins=r_p)\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
204
    "# edges of bins\n",
205
    "r1,r2 =r[:-1],r[1:]\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
206
    "# shell's volume\n",
207
    "vol = 4.* np.pi * ((r2**3)-(r1**3)) / 3.\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
208
    "r_size = r_p[1:]-r_p[:-1]\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
209
210
211
    "# density per shell\n",
    "profileDMO = n_dm*myDMO.dm.mass.min()/vol\n",
    "# center of bins\n",
212
213
    "r = (r_p[:-1]+r_p[1:])/2.\n",
    "bin_size= (r_p[:-1]-r_p[1:])/2.\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
214
    "rr = r\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
215
216
217
218
219
220
221
    "\n",
    "\n",
    "Delta_rho = (myDMO.dm.mass.min() /vol) + (4*np.pi*(r**2)* (n_dm*myDMO.dm.mass.min()) * r_size / vol**2)\n",
    "Delta_rho2 = np.sqrt((myDMO.dm.mass.min()/np.sqrt(n_dm) /vol)**2 + (4*np.pi*(r**2)* (n_dm*myDMO.dm.mass.min()) * r_size / vol**2)**2)\n",
    "Delta_rho3 =(4*np.pi*(r**2)* (n_dm*myDMO.dm.mass.min()) * r_size / vol**2)\n",
    "Delta_rho4 =(myDMO.dm.mass.min() /vol)\n",
    "\n",
222
223
224
225
226
227
228
229
    "# extra estatistics from Cfalcon density\n",
    "mean = np.array([])\n",
    "std = np.array([])\n",
    "n=np.array([])\n",
    "for i in range(len(r_p)-1):\n",
    "    shell = np.where((myDMO.dm.r > r_p[i])&(myDMO.dm.r < r_p[i+1])&(myDMO.dm.r > hsml))\n",
    "    n = np.append(n,len(shell[0]))\n",
    "    mean = np.append(mean,np.mean(myDMO.dm.rho[shell]))\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
230
231
    "    std = np.append(std,np.std(myDMO.dm.rho[shell]))\n",
    "    \n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
232
233
234
    "\n",
    "m_obs = n_dm*myDMO.dm.mass.min()\n",
    "n = np.array([len(myDMO.dm.mass[myDMO.dm.r<i]) for i in r]) "
235
236
237
238
   ]
  },
  {
   "cell_type": "code",
239
240
241
242
243
244
245
246
247
248
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 6,
249
250
251
252
253
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
254
255
256
257
258
    "def abg_logprofile(x,p_s,r_s,al,be,ga):\n",
    "    x = 10**x\n",
    "    power =  (be - ga) / (al)\n",
    "    denominator = ((x/(r_s))**ga) * ((1 + (x / (r_s))**al)**power)\n",
    "    return np.log10(10**p_s / denominator)\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
259
    "\n",
260
261
262
263
    "def abg_profile(x,po,r_s,al,be,ga):\n",
    "    power =  (be - ga) / al\n",
    "    denominator = ((x/r_s)**ga) * ((1 + (x / r_s)**al)**power)\n",
    "    return (10**po) / denominator\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
264
265
    "\n",
    "def chi2_mass(po,r_s,al,be,ga):\n",
266
267
268
269
    "    \"\"\"\n",
    "    logarithmic Chi-square\n",
    "    using the full mass inside a radius R\n",
    "    \"\"\"\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
270
271
272
273
274
275
276
277
278
    "    def my_int(R):\n",
    "        r_test = np.logspace(np.log10(hsml),np.log10(R),100)\n",
    "        rho_test = 4* np.pi * (r_test**2) * abg_profile(r_test,po,r_s,al,be,ga)\n",
    "        return simps(rho_test,r_test)\n",
    "    expected = np.array([my_int(i) for i in r])\n",
    "    c = (np.log10(m_obs)- np.log10(expected))/ (np.log10(m_obs)-0.5*np.log10(n))\n",
    "    c = c**2\n",
    "    return np.sum(c)\n",
    "\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
279
    "def chi2_mass_bin(po,r_s,al,be,ga):\n",
280
281
282
283
284
    "    \"\"\"\n",
    "    logarithmic Chi-square\n",
    "    using the full mass inside a shell\n",
    "    between Ri and Rf\n",
    "    \"\"\"\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
285
286
287
288
289
290
291
292
293
294
    "    def my_int(Ri,Rf):\n",
    "        r_test = np.logspace(np.log10(Ri),np.log10(Rf),100)\n",
    "        rho_test =  (r_test**2) * abg_profile(r_test,po,r_s,al,be,ga)\n",
    "        return 4* np.pi * simps(rho_test,r_test)\n",
    "    expected = np.array([my_int(r_p[i],r_p[i+1]) for i in range(len(r))])\n",
    "    c = (np.log10(m_obs)- np.log10(expected))#/ (np.log10(m_obs)-0.5*np.log10(n))\n",
    "    c = c**2\n",
    "    return np.sum(c)\n",
    "\n",
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
295
296
    "\n",
    "def chi2_rho(po,r_s,al,be,ga):\n",
297
298
299
300
    "    \"\"\"\n",
    "    logarithmic Chi-square\n",
    "    using mean of rho per shell\n",
    "    \"\"\"\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
301
302
303
304
305
    "    rho_obs = profileDMO\n",
    "    rho_the = np.array([abg_profile(i,po,r_s,al,be,ga) for i in r])\n",
    "    c = (np.log10(rho_the) - np.log10(rho_obs))/ np.log10(std)\n",
    "    c = c**2\n",
    "    return np.sum(c)"
306
307
308
309
310
311
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
312
    "collapsed": false
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
328
   "execution_count": 7,
329
330
331
332
333
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
334
335
336
337
338
339
340
     "data": {
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
341
342
343
    },
    {
     "data": {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
344
345
346
347
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
348
349
350
       "                <td title=\"Minimum value of function\">FCN = 0.0137883614919</td>\n",
       "                <td title=\"Total number of call to FCN so far\">TOTAL NCALL = 114</td>\n",
       "                <td title=\"Number of call in last migrad\">NCALLS = 114</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
351
352
       "            </tr>\n",
       "            <tr>\n",
353
       "                <td title=\"Estimated distance to minimum\">EDM = 0.000112609340069</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
       "                <td title=\"Maximum EDM definition of convergence\">GOAL EDM = 1e-05</td>\n",
       "                <td title=\"Error def. Amount of increase in FCN to be defined as 1 standard deviation\">\n",
       "                UP = 1.0</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        \n",
       "        <table>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Validity of the migrad call\">Valid</td>\n",
       "                <td align=\"center\" title=\"Validity of parameters\">Valid Param</td>\n",
       "                <td align=\"center\" title=\"Is Covariance matrix accurate?\">Accurate Covar</td>\n",
       "                <td align=\"center\" title=\"Positive definiteness of covariance matrix\">PosDef</td>\n",
       "                <td align=\"center\" title=\"Was covariance matrix made posdef by adding diagonal element\">Made PosDef</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Was last hesse call fail?\">Hesse Fail</td>\n",
       "                <td align=\"center\" title=\"Validity of covariance\">HasCov</td>\n",
       "                <td align=\"center\" title=\"Is EDM above goal EDM?\">Above EDM</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" title=\"Did last migrad call reach max call limit?\">Reach calllim</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        "
391
392
393
      ]
     },
     "metadata": {},
NUNEZ Arturo's avatar
NUNEZ Arturo committed
394
395
396
397
398
399
400
401
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
402
       "                <td><a href=\"#\" onclick=\"$('#JSStBaksGm').toggle()\">+</a></td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
403
404
405
406
407
408
409
410
411
412
413
414
415
       "                <td title=\"Variable name\">Name</td>\n",
       "                <td title=\"Value of parameter\">Value</td>\n",
       "                <td title=\"Parabolic error\">Parab Error</td>\n",
       "                <td title=\"Minos lower error\">Minos Error-</td>\n",
       "                <td title=\"Minos upper error\">Minos Error+</td>\n",
       "                <td title=\"Lower limit of the parameter\">Limit-</td>\n",
       "                <td title=\"Upper limit of the parameter\">Limit+</td>\n",
       "                <td title=\"Is the parameter fixed in the fit\">FIXED</td>\n",
       "            </tr>\n",
       "        \n",
       "            <tr>\n",
       "                <td>1</td>\n",
       "                <td>po</td>\n",
416
417
       "                <td>6.50241</td>\n",
       "                <td>2.54847</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
418
419
       "                <td>0</td>\n",
       "                <td>0</td>\n",
420
421
       "                <td>6.0</td>\n",
       "                <td>11.0</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
422
423
424
425
426
427
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>2</td>\n",
       "                <td>r_s</td>\n",
428
429
       "                <td>32.1969</td>\n",
       "                <td>38.7849</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
430
431
       "                <td>0</td>\n",
       "                <td>0</td>\n",
432
433
       "                <td>1.0</td>\n",
       "                <td>52.0</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
434
435
436
437
438
439
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>3</td>\n",
       "                <td>al</td>\n",
440
441
       "                <td>1</td>\n",
       "                <td>1</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
442
443
444
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td></td>\n",
445
446
       "                <td></td>\n",
       "                <td>FIXED</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
447
448
449
450
451
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>4</td>\n",
       "                <td>be</td>\n",
452
453
       "                <td>3.37526</td>\n",
       "                <td>0.556596</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
454
455
       "                <td>0</td>\n",
       "                <td>0</td>\n",
456
457
       "                <td>2.5</td>\n",
       "                <td>3.5</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
458
459
460
461
462
463
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>5</td>\n",
       "                <td>ga</td>\n",
464
465
       "                <td>1.29021</td>\n",
       "                <td>0.53755</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
466
467
       "                <td>0</td>\n",
       "                <td>0</td>\n",
468
469
       "                <td>0.5</td>\n",
       "                <td>1.5</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
470
471
472
473
474
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            </table>\n",
       "        \n",
475
       "            <pre id=\"JSStBaksGm\" style=\"display:none;\">\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
476
477
478
479
       "            <textarea rows=\"16\" cols=\"50\" onclick=\"this.select()\" readonly>\\begin{tabular}{|c|r|r|r|r|r|r|r|c|}\n",
       "\\hline\n",
       " & Name & Value & Para Error & Error+ & Error- & Limit+ & Limit- & FIXED\\\\\n",
       "\\hline\n",
480
       "1 & po & 6.502e+00 & 2.548e+00 &  &  & 6.000e+00 & 1.100e+01 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
481
       "\\hline\n",
482
       "2 & $r_{s}$ & 3.220e+01 & 3.878e+01 &  &  & 1.000e+00 & 5.200e+01 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
483
       "\\hline\n",
484
       "3 & al & 1.000e+00 & 1.000e+00 &  &  &  &  & FIXED\\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
485
       "\\hline\n",
486
       "4 & be & 3.375e+00 & 5.566e-01 &  &  & 2.500e+00 & 3.500e+00 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
487
       "\\hline\n",
488
       "5 & ga & 1.290e+00 & 5.375e-01 &  &  & 5.000e-01 & 1.500e+00 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
       "\\hline\n",
       "\\end{tabular}</textarea>\n",
       "            </pre>\n",
       "            "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
506
507
508
    }
   ],
   "source": [
509
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
510
    "\n",
511
    "m_rho = Minuit(chi2_rho, al=1., fix_al=True,\n",
512
    "         po=7.0,    error_po=0.01,  limit_po =(6.,11.),\n",
513
    "         r_s=19.3,  error_r_s=0.1,   limit_r_s=(1.,52),\n",
514
515
    "         be=3.,     error_be=0.01,   limit_be =(2.5,3.5),\n",
    "         ga=1.,     error_ga=0.01,   limit_ga =(.5,1.5))\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
516
    "m_rho.migrad();"
517
518
519
520
   ]
  },
  {
   "cell_type": "code",
521
   "execution_count": 8,
522
523
524
525
526
527
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
NUNEZ Arturo's avatar
NUNEZ Arturo committed
528
529
530
531
532
533
534
535
536
537
538
539
540
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
541
542
543
       "                <td title=\"Minimum value of function\">FCN = 0.587861493993</td>\n",
       "                <td title=\"Total number of call to FCN so far\">TOTAL NCALL = 132</td>\n",
       "                <td title=\"Number of call in last migrad\">NCALLS = 132</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
544
545
       "            </tr>\n",
       "            <tr>\n",
546
       "                <td title=\"Estimated distance to minimum\">EDM = 6.79668379773e-07</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
       "                <td title=\"Maximum EDM definition of convergence\">GOAL EDM = 1e-05</td>\n",
       "                <td title=\"Error def. Amount of increase in FCN to be defined as 1 standard deviation\">\n",
       "                UP = 1.0</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        \n",
       "        <table>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Validity of the migrad call\">Valid</td>\n",
       "                <td align=\"center\" title=\"Validity of parameters\">Valid Param</td>\n",
       "                <td align=\"center\" title=\"Is Covariance matrix accurate?\">Accurate Covar</td>\n",
       "                <td align=\"center\" title=\"Positive definiteness of covariance matrix\">PosDef</td>\n",
       "                <td align=\"center\" title=\"Was covariance matrix made posdef by adding diagonal element\">Made PosDef</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Was last hesse call fail?\">Hesse Fail</td>\n",
       "                <td align=\"center\" title=\"Validity of covariance\">HasCov</td>\n",
       "                <td align=\"center\" title=\"Is EDM above goal EDM?\">Above EDM</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" title=\"Did last migrad call reach max call limit?\">Reach calllim</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
595
       "                <td><a href=\"#\" onclick=\"$('#fbYfoqComg').toggle()\">+</a></td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
596
597
598
599
600
601
602
603
604
605
606
607
608
       "                <td title=\"Variable name\">Name</td>\n",
       "                <td title=\"Value of parameter\">Value</td>\n",
       "                <td title=\"Parabolic error\">Parab Error</td>\n",
       "                <td title=\"Minos lower error\">Minos Error-</td>\n",
       "                <td title=\"Minos upper error\">Minos Error+</td>\n",
       "                <td title=\"Lower limit of the parameter\">Limit-</td>\n",
       "                <td title=\"Upper limit of the parameter\">Limit+</td>\n",
       "                <td title=\"Is the parameter fixed in the fit\">FIXED</td>\n",
       "            </tr>\n",
       "        \n",
       "            <tr>\n",
       "                <td>1</td>\n",
       "                <td>po</td>\n",
609
610
       "                <td>5.85217</td>\n",
       "                <td>0.913094</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
611
612
       "                <td>0</td>\n",
       "                <td>0</td>\n",
613
614
       "                <td>5.8521658767</td>\n",
       "                <td>7.15264718264</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
615
616
617
618
619
620
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>2</td>\n",
       "                <td>r_s</td>\n",
621
622
       "                <td>28.9772</td>\n",
       "                <td>6.43401</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
623
624
       "                <td>0</td>\n",
       "                <td>0</td>\n",
625
626
       "                <td>28.9771730865</td>\n",
       "                <td>35.4165448835</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
627
628
629
630
631
632
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>3</td>\n",
       "                <td>al</td>\n",
633
634
       "                <td>1</td>\n",
       "                <td>1</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
635
636
637
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td></td>\n",
638
639
       "                <td></td>\n",
       "                <td>FIXED</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
640
641
642
643
644
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>4</td>\n",
       "                <td>be</td>\n",
645
646
       "                <td>3.71279</td>\n",
       "                <td>0.675052</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
647
648
       "                <td>0</td>\n",
       "                <td>0</td>\n",
649
650
       "                <td>3.03773495566</td>\n",
       "                <td>3.71278716803</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
651
652
653
654
655
656
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>5</td>\n",
       "                <td>ga</td>\n",
657
658
       "                <td>1.16119</td>\n",
       "                <td>0.13827</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
659
660
       "                <td>0</td>\n",
       "                <td>0</td>\n",
661
662
       "                <td>1.16118809445</td>\n",
       "                <td>1.41922989322</td>\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
663
664
665
666
667
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            </table>\n",
       "        \n",
668
       "            <pre id=\"fbYfoqComg\" style=\"display:none;\">\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
669
670
671
672
       "            <textarea rows=\"16\" cols=\"50\" onclick=\"this.select()\" readonly>\\begin{tabular}{|c|r|r|r|r|r|r|r|c|}\n",
       "\\hline\n",
       " & Name & Value & Para Error & Error+ & Error- & Limit+ & Limit- & FIXED\\\\\n",
       "\\hline\n",
673
       "1 & po & 5.852e+00 & 9.131e-01 &  &  & 5.852e+00 & 7.153e+00 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
674
       "\\hline\n",
675
       "2 & $r_{s}$ & 2.898e+01 & 6.434e+00 &  &  & 2.898e+01 & 3.542e+01 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
676
       "\\hline\n",
677
       "3 & al & 1.000e+00 & 1.000e+00 &  &  &  &  & FIXED\\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
678
       "\\hline\n",
679
       "4 & be & 3.713e+00 & 6.751e-01 &  &  & 3.038e+00 & 3.713e+00 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
680
       "\\hline\n",
681
       "5 & ga & 1.161e+00 & 1.383e-01 &  &  & 1.161e+00 & 1.419e+00 & \\\\\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
       "\\hline\n",
       "\\end{tabular}</textarea>\n",
       "            </pre>\n",
       "            "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "low = 0.9\n",
    "upp = 1.1\n",
    "po,r_s,al,be,ga = m_rho.values['po'] ,m_rho.values['r_s'],m_rho.values['al'],m_rho.values['be'],m_rho.values['ga']\n",
705
    "m_SC = Minuit(chi2_mass, al=1., fix_al=True,\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
706
707
708
709
710
711
712
713
714
    "         po=po,    error_po=0.01,  limit_po =(po*low,po*upp),\n",
    "         r_s=r_s,  error_r_s=1.,   limit_r_s=(r_s*low,r_s*upp),\n",
    "         be=be,     error_be=0.1,   limit_be =(be*low,be*upp),\n",
    "         ga=ga,     error_ga=0.1,   limit_ga =(ga*low,ga*upp))\n",
    "m_SC.migrad();"
   ]
  },
  {
   "cell_type": "code",
715
   "execution_count": 9,
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
735
736
737
       "                <td title=\"Minimum value of function\">FCN = 0.870010738122</td>\n",
       "                <td title=\"Total number of call to FCN so far\">TOTAL NCALL = 404</td>\n",
       "                <td title=\"Number of call in last migrad\">NCALLS = 404</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
738
739
       "            </tr>\n",
       "            <tr>\n",
740
       "                <td title=\"Estimated distance to minimum\">EDM = 1.34288676412e-06</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
       "                <td title=\"Maximum EDM definition of convergence\">GOAL EDM = 1e-05</td>\n",
       "                <td title=\"Error def. Amount of increase in FCN to be defined as 1 standard deviation\">\n",
       "                UP = 1.0</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        \n",
       "        <table>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Validity of the migrad call\">Valid</td>\n",
       "                <td align=\"center\" title=\"Validity of parameters\">Valid Param</td>\n",
       "                <td align=\"center\" title=\"Is Covariance matrix accurate?\">Accurate Covar</td>\n",
       "                <td align=\"center\" title=\"Positive definiteness of covariance matrix\">PosDef</td>\n",
       "                <td align=\"center\" title=\"Was covariance matrix made posdef by adding diagonal element\">Made PosDef</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" title=\"Was last hesse call fail?\">Hesse Fail</td>\n",
       "                <td align=\"center\" title=\"Validity of covariance\">HasCov</td>\n",
       "                <td align=\"center\" title=\"Is EDM above goal EDM?\">Above EDM</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" title=\"Did last migrad call reach max call limit?\">Reach calllim</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">True</td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "                <td align=\"center\"></td>\n",
       "                <td align=\"center\" style=\"background-color:#92CCA6\">False</td>\n",
       "            </tr>\n",
       "        </table>\n",
       "        "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <table>\n",
       "            <tr>\n",
789
       "                <td><a href=\"#\" onclick=\"$('#lGUYdvpgdq').toggle()\">+</a></td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
790
791
792
793
794
795
796
797
798
799
800
801
802
       "                <td title=\"Variable name\">Name</td>\n",
       "                <td title=\"Value of parameter\">Value</td>\n",
       "                <td title=\"Parabolic error\">Parab Error</td>\n",
       "                <td title=\"Minos lower error\">Minos Error-</td>\n",
       "                <td title=\"Minos upper error\">Minos Error+</td>\n",
       "                <td title=\"Lower limit of the parameter\">Limit-</td>\n",
       "                <td title=\"Upper limit of the parameter\">Limit+</td>\n",
       "                <td title=\"Is the parameter fixed in the fit\">FIXED</td>\n",
       "            </tr>\n",
       "        \n",
       "            <tr>\n",
       "                <td>1</td>\n",
       "                <td>po</td>\n",
803
804
       "                <td>6.93319</td>\n",
       "                <td>0.782943</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
805
806
807
808
809
810
811
812
813
814
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td>2.0</td>\n",
       "                <td>15.0</td>\n",
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>2</td>\n",
       "                <td>r_s</td>\n",
815
816
       "                <td>19.0938</td>\n",
       "                <td>12.0441</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
817
818
       "                <td>0</td>\n",
       "                <td>0</td>\n",
819
       "                <td>10.0</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
820
821
822
823
824
825
826
       "                <td>25.0</td>\n",
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>3</td>\n",
       "                <td>al</td>\n",
827
828
       "                <td>1</td>\n",
       "                <td>1</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
829
830
831
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td></td>\n",
832
833
       "                <td></td>\n",
       "                <td>FIXED</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
834
835
836
837
838
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>4</td>\n",
       "                <td>be</td>\n",
839
840
       "                <td>3.1</td>\n",
       "                <td>0.147596</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
841
842
843
844
845
846
847
848
849
850
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td>2.9</td>\n",
       "                <td>3.1</td>\n",
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "                <td>5</td>\n",
       "                <td>ga</td>\n",
851
852
       "                <td>1.20283</td>\n",
       "                <td>0.30994</td>\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
853
854
855
856
857
858
859
860
861
       "                <td>0</td>\n",
       "                <td>0</td>\n",
       "                <td>0.01</td>\n",
       "                <td>2.0</td>\n",
       "                <td></td>\n",
       "            </tr>\n",
       "            \n",
       "            </table>\n",
       "        \n",
862
       "            <pre id=\"lGUYdvpgdq\" style=\"display:none;\">\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
863
864
865
866
       "            <textarea rows=\"16\" cols=\"50\" onclick=\"this.select()\" readonly>\\begin{tabular}{|c|r|r|r|r|r|r|r|c|}\n",
       "\\hline\n",
       " & Name & Value & Para Error & Error+ & Error- & Limit+ & Limit- & FIXED\\\\\n",
       "\\hline\n",
867
       "1 & po & 6.933e+00 & 7.829e-01 &  &  & 2.000e+00 & 1.500e+01 & \\\\\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
868
       "\\hline\n",
869
       "2 & $r_{s}$ & 1.909e+01 & 1.204e+01 &  &  & 1.000e+01 & 2.500e+01 & \\\\\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
870
       "\\hline\n",
871
       "3 & al & 1.000e+00 & 1.000e+00 &  &  &  &  & FIXED\\\\\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
872
       "\\hline\n",
873
       "4 & be & 3.100e+00 & 1.476e-01 &  &  & 2.900e+00 & 3.100e+00 & \\\\\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
874
       "\\hline\n",
875
       "5 & ga & 1.203e+00 & 3.099e-01 &  &  & 1.000e-02 & 2.000e+00 & \\\\\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
       "\\hline\n",
       "\\end{tabular}</textarea>\n",
       "            </pre>\n",
       "            "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<hr>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
896
    "m_bin = Minuit(chi2_mass_bin,  al=1., fix_al=True,\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
897
    "          po=8.0,    error_po=0.01,  limit_po =(2.,15.),\n",
898
    "         r_s=20.3,  error_r_s=0.1,   limit_r_s=(10,25),\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
899
900
901
902
903
904
905
    "         be=3.,     error_be=0.01,   limit_be =(2.9,3.1),\n",
    "         ga=1.,     error_ga=0.01,   limit_ga =(0.01,2.))\n",
    "m_bin.migrad();"
   ]
  },
  {
   "cell_type": "code",
906
   "execution_count": 11,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
907
   "metadata": {
908
    "collapsed": false,
909
    "hide_input": false
NUNEZ Arturo's avatar
NUNEZ Arturo committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
   },
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        this.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width);\n",
       "        canvas.attr('height', height);\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'];\n",
       "    var y0 = fig.canvas.height - msg['y0'];\n",
       "    var x1 = msg['x1'];\n",
       "    var y1 = fig.canvas.height - msg['y1'];\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x;\n",
       "    var y = canvas_pos.y;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
1679
       "<img src=\"\">"
1680
1681
1682
1683
1684
1685
1686
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1687
1688
1689
    }
   ],
   "source": [
1690
    "fig, [ax,ax1] = plt.subplots(2,1,gridspec_kw = {'height_ratios':[3.5, 1]},figsize=[6,7],sharex=True)\n",
1691
    "ax.set_xlim([0.2*hsml,600])\n",
1692
1693
    "ax1.set_xlim([0.2*hsml,600])\n",
    "ax1.set_ylim([.5,1.5])\n",
1694
1695
    "ax.set_ylim([2e2,2e10])\n",
    "ax.set_xscale('log')\n",
1696
    "ax1.set_xscale('log')\n",
1697
    "ax.set_yscale('log')\n",
1698
    "ax1.set_xlabel('R [kpc]',fontsize=15)\n",
1699
1700
    "ax.set_ylabel(r'$\\rho(r)$ [M$_{\\odot}$ kpc $^{-3}$]',fontsize=15)\n",
    "ax.set_title(\"Mochima 2 DM\",fontsize=17)\n",
1701
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1702
1703
1704
1705
1706
1707
    "#define sigma pluss and sigma minus lines\n",
    "mean_plus = profileDMO+std\n",
    "mean_minu = profileDMO-std\n",
    "\n",
    "#  plot things\n",
    "#ax.scatter(myDMO.dm.r,myDMO.dm.rho,s=0.02,lw=0,alpha=0.6,c='#FF9100')\n",
1708
    "mean_minu[np.isnan(np.log10(mean_minu))] = 0\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1709
1710
1711
1712
1713
    "ax.plot(r[~np.isnan(np.log10(mean_plus))],mean_plus[~np.isnan(np.log10(mean_plus))],\n",
    "        c='g')\n",
    "ax.plot(r[~np.isnan(np.log10(mean_minu))],mean_minu[~np.isnan(np.log10(mean_minu))],\n",
    "        c='g')\n",
    "\n",
1714
1715
1716
1717
    "ax.fill_between(r,mean_plus,mean_minu,color=\"g\",alpha=0.3)\n",
    "#ax.errorbar(r,profileDMO,xerr=bin_size,yerr=std,alpha=0.5)\n",
    "\n",
    "#ax.scatter(myDMO.dm.r,myDMO.dm.rho,s=0.2,lw=0,alpha=0.2,c='gray')\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1718
1719
1720
1721
    "\n",
    "#plot means\n",
    "#ax.plot(r_p[:-1],mean,lw=1.5)\n",
    "ax.plot(r_p[:-1],profileDMO,lw=1.5)\n",
1722
    "## rho fit\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1723
    "ax.plot(r,(abg_profile(r,m_rho.values['po'] ,m_rho.values['r_s'],m_rho.values['al'],m_rho.values['be'],m_rho.values['ga'])),\n",
1724
1725
1726
1727
1728
1729
1730
    "        \"k\",lw=2,label=r\"$\\chi^2(\\rho) \")\n",
    "## spehere mass\n",
    "#ax.plot(r,(abg_profile(r,m_SC.values['po'] ,m_SC.values['r_s'],m_SC.values['al'],m_SC.values['be'],m_SC.values['ga'])),\n",
    "#        \"r-\",lw=2)\n",
    "## shell mass\n",
    "ax.plot(r[1:],(abg_profile(r[:-1],m_bin.values['po'] ,m_bin.values['r_s'],m_bin.values['al'],m_bin.values['be'],m_bin.values['ga'])),\n",
    "        \"r--\",lw=2)\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1731
    "\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1732
    "texto = \"fit results: \\n\"\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1733
1734
1735
1736
1737
    "texto += r\"$\\rho_0$ = {0:.3f} $\\pm$ {1:.3f}\".format(m_bin.values[\"po\"],m_bin.errors[\"po\"])+\"\\n\"\n",
    "texto += r\"$r_s$ = {0:.3f} $\\pm$ {1:.3f}\".format(m_bin.values[\"r_s\"],m_bin.errors[\"r_s\"])+\"\\n\"\n",
    "texto += r\"$\\alpha$ = {0:.3f} $\\pm$ {1:.3f}\".format(m_bin.values[\"al\"],m_bin.errors[\"al\"])+\"\\n\"\n",
    "texto += r\"$\\beta$ = {0:.3f} $\\pm$ {1:.3f}\".format(m_bin.values[\"be\"],m_bin.errors[\"be\"])+\"\\n\"\n",
    "texto += r\"$\\gamma$ = {0:.3f} $\\pm$ {1:.3f}\".format(m_bin.values[\"ga\"],m_bin.errors[\"ga\"])+\"\\n\"\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1738
1739
1740
1741
    "\n",
    "fig.text(0.25,0.3,texto,fontsize=12)\n",
    "ax.text(3*hsml*1.1,1e8,\"3hsml\",color='gray',fontsize=14)\n",
    "ax.text(8*1.1,1e8,\"Sun\",color='y',fontsize=14)\n",
1742
    "ax.text(myDMO.r200*1.01,1e8,r\"R$_{200}$\",color='k',fontsize=14)\n",
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
    "r_dm = r\n",
    "\n",
    "\n",
    "#horizontal lines\n",
    "ax.axvline(x=hsml,c='gray',alpha=0.5,linestyle='--',lw=1.5)\n",
    "ax.axvline(x=3*hsml,c='gray',alpha=0.5,linestyle='--',lw=1.5)\n",
    "ax.axvline(x=8,c='y',linestyle='--',lw=1.5) #Sun\n",
    "ax.axvline(x=myDMO.r200,c='k',linestyle='--',lw=1.5) #r200\n",
    "\n",
    "#########33\n",
    "\n",
    "##\n",
    "ax1.axhline(y=1.,color=\"g\",linestyle=\"--\")\n",
    "## rho fit\n",
    "r_local = np.logspace(np.log10(hsml),np.log10(2.5*myDMO.r200),100)\n",
    "ax1.plot(r,(abg_profile(r,m_rho.values['po'] ,m_rho.values['r_s'],m_rho.values['al'],m_rho.values['be'],m_rho.values['ga']))/profileDMO,\n",
    "        \"k\",lw=1.5,label=r\"$\\chi^2(\\rho) \")\n",
    "\n",
    "ax1.plot(r_in,(abg_profile(r_in,m_rho.values['po'] ,m_rho.values['r_s'],m_rho.values['al'],m_rho.values['be'],m_rho.values['ga']))/profileDMO_in,\n",
    "        \"k--\",lw=1.5,label=r\"$\\chi^2(\\rho) \")\n",
    "## spehere mass\n",
    "#ax.plot(r,(abg_profile(r,m_SC.values['po'] ,m_SC.values['r_s'],m_SC.values['al'],m_SC.values['be'],m_SC.values['ga'])),\n",
    "#        \"r-\",lw=2)\n",
    "## shell mass\n",
    "ax1.plot(r,(abg_profile(r,m_bin.values['po'] ,m_bin.values['r_s'],m_bin.values['al'],m_bin.values['be'],m_bin.values['ga']))/profileDMO,\n",
    "        \"r-\",lw=1.5)\n",
    "ax1.plot(r_in,(abg_profile(r_in,m_bin.values['po'] ,m_bin.values['r_s'],m_bin.values['al'],m_bin.values['be'],m_bin.values['ga']))/profileDMO_in,\n",
    "        \"r--\",lw=1.5)\n",
    "\n",
    "#horizontal lines\n",
    "ax1.axvline(x=hsml,c='gray',alpha=0.5,linestyle='--',lw=1.5)\n",
    "ax1.axvline(x=3*hsml,c='gray',alpha=0.5,linestyle='--',lw=1.5)\n",
    "ax1.axvline(x=8,c='y',linestyle='--',lw=1.5) #Sun\n",
    "ax1.axvline(x=myDMO.r200,c='k',linestyle='--',lw=1.5) #r200\n",
    "\n",
    "\n",
    "\n",
    "# layout\n",
    "fig.tight_layout(h_pad=-1.65)\n",
    "ax.tick_params(axis='both', which='major', labelsize=15, size=5,width=1.2)\n",
    "ax.tick_params(axis='both', which='minor', labelsize=15, size=3,width=1.2)\n",
    "ax1.tick_params(axis='both', which='major', labelsize=15, size=5,width=1.2)\n",
    "ax1.tick_params(axis='both', which='minor', labelsize=15, size=3,width=1.2)"
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1786
1787
1788
1789
   ]
  },
  {
   "cell_type": "code",
1790
   "execution_count": 12,
1791
   "metadata": {
1792
1793
    "collapsed": false,
    "hide_input": true
1794
1795
1796
1797
1798
1799
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1800
1801
1802
1803
      "###################################################\n",
      "##################### LUPM ########################\n",
      "################## Mochima DMO ####################\n",
      "fit results: \n",
1804
1805
      "$\\rho_0$ = 6.933 $\\pm$ 0.783\n",
      "$r_s$ = 19.094 $\\pm$ 12.044\n",
1806
      "$\\alpha$ = 1.000 $\\pm$ 1.000\n",
1807
1808
      "$\\beta$ = 3.100 $\\pm$ 0.148\n",
      "$\\gamma$ = 1.203 $\\pm$ 0.310\n",
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1809
      "\n"
1810
1811
1812
1813
     ]
    }
   ],
   "source": [
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1814
1815
1816
1817
    "print \"###################################################\"\n",
    "print \"##################### LUPM ########################\"\n",
    "print \"################## Mochima DMO ####################\"\n",
    "print texto"
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1818
1819
1820
1821
   ]
  },
  {
   "cell_type": "code",
1822
   "execution_count": null,
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1823
   "metadata": {
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
    "collapsed": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "#### TAKES TIME ####\n",
    "\n",
    "myGkpc = 6.673e-11*((1e-3/myDMO.p.kpctokm)**3)*myDMO.p.msuntokg#kpc^ 3 Msun^-1 s^-2\n",
    "pos = np.array(myDMO.dm.pos3d.reshape(len(myDMO.dm.pos3d)*3),dtype=np.float32)#*myDMO.p.kpctokm\n",
    "#ok, acc, Phy = CF.getGravity(pos,myDMO.dm.mass,0.190,G=myGkpc)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'\\nbin_num = 512\\n\\npot_sph, bins_pot = np.histogram(r2,bins=bin_num,\\n                                 weights=Phy)\\nn, _ = np.histogram(r2,bins=bin_num)\\n\\nbin_num = 512\\nbins_pot = np.linspace(0.,myDMO.dm.r.max(),512)\\npot_sph_vesc, bins_pot_vesc = np.histogram(r2[(r2<myDMO.r200**2)], bins=bin_num, weights=Phy[(r2<myDMO.r200**2)])\\nrmax = np.sqrt(bins_pot[(pot_sph/n)==(pot_sph/n)[(bins_pot<503.**2)].max()])[0]\\npot_max = (pot_sph/n)[(pot_sph/n)==(pot_sph/n)[(bins_pot<503.**2)].max()][0]\\n'"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\"\"\"\n",
    "bin_num = 512\n",
    "\n",
    "pot_sph, bins_pot = np.histogram(r2,bins=bin_num,\n",
    "                                 weights=Phy)\n",
    "n, _ = np.histogram(r2,bins=bin_num)\n",
    "\n",
    "bin_num = 512\n",
    "bins_pot = np.linspace(0.,myDMO.dm.r.max(),512)\n",
    "pot_sph_vesc, bins_pot_vesc = np.histogram(r2[(r2<myDMO.r200**2)], bins=bin_num, weights=Phy[(r2<myDMO.r200**2)])\n",
    "rmax = np.sqrt(bins_pot[(pot_sph/n)==(pot_sph/n)[(bins_pot<503.**2)].max()])[0]\n",
    "pot_max = (pot_sph/n)[(pot_sph/n)==(pot_sph/n)[(bins_pot<503.**2)].max()][0]\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false,
    "hide_input": false
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1884
   },
1885
   "outputs": [],
NUNEZ Arturo's avatar
NUNEZ Arturo committed
1886
   "source": [
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1887
    "\n",
1888
1889
    "mass = myDMO.dm.mass\n",
    "v = myDMO.dm.v\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1890
    "\n",
1891
1892
    "pos3d = pos.reshape(len(pos)/3,3)\n",
    "r2 = pos3d[:,0]**2 + pos3d[:,1]**2 +pos3d[:,2]**2\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1893
    "\n",
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
    "def vesc_from_pot(limmin, limmax):\n",
    "    \"\"\"\n",
    "    a function calculating the vesc from potential inside interval\n",
    "    \"\"\"\n",
    "    contidion = (r2>limmin**2)&(r2<limmax**2)\n",
    "    mean = np.average(Phy[contidion])\n",
    "    sigma = np.std((Phy[contidion]))\n",
    "    v_esc = np.sqrt(2*np.abs(mean - pot_max))\n",
    "    sig_vesc = sigma / v_esc \n",
    "    return v_esc, sig_vesc \n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1904
    "\n",
1905
1906
1907
    "def maxw(v,sigma):\n",
    "    N = np.sqrt(32 * np.pi) * v**2 / sigma**3\n",
    "    return N * np.exp(- v**2 / 2. / sigma**2)\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1908
    "\n",
1909
    "get_maxw = np.vectorize(maxw)\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1910
    "\n",
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    "def eddingtong_from_file(path):\n",
    "    v = np.array([])\n",
    "    fv = np.array([])\n",
    "    files = open(path)\n",
    "    for line in files:\n",
    "        row = line.split(' ')\n",
    "        if row[0][0]==\"#\":continue\n",
    "        if np.isnan(float(row[1][:-1])):\n",
    "            continue\n",
    "        \n",
    "        v = np.append(v,float(row[0]))\n",
    "        \n",
    "        fv = np.append(fv,float(row[1][:-1]))\n",
    "        \n",
    "    return v,fv\n",
NUNEZ Arturo's avatar
commit    
NUNEZ Arturo committed
1926
    "\n",
1927
    "\n",
1928
    "def fdv_plot_chi2_max_edd(ax,sim,path, limmin, limmax,dmo=True,save=False,outname=\"/home/arturo/Pictures/ploto\",width=None):\n",
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959