Commit 4e99b883 authored by NUNEZ Arturo's avatar NUNEZ Arturo

Automatic commit mercredi 1 août 2018, 16:30:02 (UTC+0200)

parent 3b98370c
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -64,7 +64,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"metadata": {
"collapsed": false,
"hide_input": false,
......@@ -77,12 +77,22 @@
"text": [
"loading Dark matter..\n",
"loading Stars..\n",
"loading Gas..\n",
"| r_200 = 212.70\n",
"| Diagonal matrix computed \n",
"| | 20, 0, 0|\n",
"| D =| 0, 14, 0|\n",
"| | 0, 0, 4|\n"
"loading Gas..\n"
]
},
{
"ename": "LinAlgError",
"evalue": "Array must not contain infs or NaNs",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mLinAlgError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-4-f763ddbd9374>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmyhydro\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwkbl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGalaxy_Hound\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhydro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmyhydro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcenter_shift\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhydro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc_dm_com\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmyhydro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mr_virial\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m600\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/home/arturo/Documents/git/WKBL/wkbl/astro/galaxy_peeker.pyc\u001b[0m in \u001b[0;36mr_virial\u001b[0;34m(self, r_max, r_min, rotate, n, bins, quiet)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mrotate\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;32mand\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 84\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrotate_galaxy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 85\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mredefine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0mD\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatrix_T\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatrix_P\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatrix_T\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/home/arturo/Documents/git/WKBL/wkbl/astro/galaxy_peeker.pyc\u001b[0m in \u001b[0;36mrotate_galaxy\u001b[0;34m(self, rmin, rmax)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0msecond\u001b[0m \u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maverage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpos_ring\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maverage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpos_ring\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0mP\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfirst\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0msecond\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 122\u001b[0;31m \u001b[0meigen_values\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mevecs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinalg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mP\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 123\u001b[0m \u001b[0morder\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margsort\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meigen_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0mT\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/numpy/linalg/linalg.pyc\u001b[0m in \u001b[0;36meig\u001b[0;34m(a)\u001b[0m\n\u001b[1;32m 1141\u001b[0m \u001b[0m_assertRankAtLeast2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0m_assertNdSquareness\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1143\u001b[0;31m \u001b[0m_assertFinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1144\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_t\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_commonType\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/numpy/linalg/linalg.pyc\u001b[0m in \u001b[0;36m_assertFinite\u001b[0;34m(*arrays)\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 216\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mLinAlgError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Array must not contain infs or NaNs\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 217\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_isEmpty2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mLinAlgError\u001b[0m: Array must not contain infs or NaNs"
]
}
],
......@@ -90,25 +100,16 @@
"hydro = wkbl.astro.halo_info.AdicoraHydro() \n",
"myhydro = wkbl.Galaxy_Hound(hydro.path)\n",
"myhydro.center_shift(hydro.c_dm_com)\n",
"myhydro.r_virial(600,n=25)\n"
"myhydro.r_virial(600,n=2.5)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/data/OWN/SF1test/SF0/mstar1_T3600/output_00041\n",
"[20418.88714 17567.72033 17124.40448]\n"
]
}
],
"outputs": [],
"source": [
"print hydro.path\n",
"print hydro.c_dm_com"
......@@ -116,7 +117,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {
"collapsed": true
},
......@@ -132,31 +133,12 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8.215e+11\n",
"1.175e+11\n"
]
},
{
"data": {
"text/plain": [
"0.281102"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"print \"{0:.3e}\".format(np.sum(myhydro.dm.mass[myhydro.dm.r<myhydro.r200]))\n",
"print \"{0:.3e}\".format(np.sum(myhydro.st.mass[myhydro.st.r<myhydro.r200]))\n",
......@@ -5203,7 +5185,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 5,
"metadata": {
"collapsed": true
},
......@@ -5214,7 +5196,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 6,
"metadata": {
"collapsed": false,
"hide_input": false
......@@ -5245,7 +5227,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 7,
"metadata": {
"collapsed": false
},
......@@ -5256,7 +5238,7 @@
"0.308899998664856"
]
},
"execution_count": 14,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
......@@ -5267,7 +5249,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 10,
"metadata": {
"collapsed": false
},
......@@ -5275,21 +5257,21 @@
{
"data": {
"text/plain": [
"275.9765625"
"205.6640625"
]
},
"execution_count": 15,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"myDMO.r97"
"myDMO.r200"
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 9,
"metadata": {
"collapsed": false,
"hide_input": false
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"collapsed": true
},
......@@ -15,7 +15,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"collapsed": true
},
......@@ -64,7 +64,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"collapsed": true
},
......@@ -74,6 +74,28 @@
"hydro = wkbl.astro.halo_info.AdicoraHydro()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'/data/OWN/Adicora/SF0/Stable/output_00041'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hydro.path"
]
},
{
"cell_type": "code",
"execution_count": 5,
......@@ -88,11 +110,11 @@
"loading Dark matter..\n",
"loading Stars..\n",
"loading Gas..\n",
"36844.594\n",
"| r_200 = 212.70\n",
"36839.426\n",
"| r_200 = 211.52\n",
"| Diagonal matrix computed \n",
"| | 20, 0, 0|\n",
"| D =| 0, 14, 0|\n",
"| | 19, 0, 0|\n",
"| D =| 0, 15, 0|\n",
"| | 0, 0, 4|\n"
]
}
......@@ -102,9 +124,9 @@
"simname=hydro.name\n",
"myhydro = wkbl.Galaxy_Hound(hydro.path)\n",
"print myhydro.dm.pos3d[:,0].max()\n",
"#zoom_reg = np.where(myhydro.dm.mass==myhydro.dm.mass.min())\n",
"#nucenter = nbe.real_center(myhydro.dm.pos3d[zoom_reg], myhydro.dm.mass[zoom_reg])\n",
"myhydro.center_shift(hydro.c_dm_com)\n",
"zoom_reg = np.where(myhydro.dm.mass==myhydro.dm.mass.min())\n",
"nucenter = nbe.real_center(myhydro.dm.pos3d[zoom_reg], myhydro.dm.mass[zoom_reg])\n",
"myhydro.center_shift(nucenter)\n",
"myhydro.r_virial(600,n=2.3)\n",
"\n"
]
......@@ -135,7 +157,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"9508326 9508326\n"
"7679691 7679691\n"
]
}
],
......@@ -162,7 +184,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 11,
"metadata": {
"collapsed": true
},
......@@ -171,17 +193,26 @@
"get_mat = np.vectorize(nbe.m_matrix_for_r)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
"collapsed": false
},
"outputs": [],
"source": [
"r = np.linspace(myhydro.gs.hsml.min(),2*myhydro.r200,300)\n",
"M_dm = np.array([nbe.m_matrix_for_r(myhydro,'halo',i) for i in r])\n",
"M_st = np.array([nbe.m_matrix_for_r(myhydro,'stars',i) for i in r])\n",
"M_dm = np.array([nbe.m_matrix_for_r(myhydro,'halo',i)[0] for i in r])\n",
"M_st = np.array([nbe.m_matrix_for_r(myhydro,'stars',i)[0] for i in r])\n",
"a_dm, b_dm, c_dm = np.sqrt(M_dm[:,0,0]), np.sqrt(M_dm[:,1,1]), np.sqrt(M_dm[:,2,2])\n",
"a_st, b_st, c_st = np.sqrt(M_st[:,0,0]), np.sqrt(M_st[:,1,1]), np.sqrt(M_st[:,2,2])\n",
"S_dm = c_dm/a_dm\n",
......@@ -211,7 +242,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"metadata": {
"collapsed": false
},
......@@ -983,7 +1014,7 @@
{
"data": {
"text/html": [
"<img src=\"\">"
"<img src=\"\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
......@@ -1032,7 +1063,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {
"collapsed": true
},
......@@ -1047,7 +1078,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": null,
"metadata": {
"collapsed": true
},
......@@ -1066,7 +1097,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {
"collapsed": true
},
......@@ -1077,7 +1108,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": null,
"metadata": {
"collapsed": true
},
......@@ -1096,788 +1127,11 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" this.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width);\n",
" canvas.attr('height', height);\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",