Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
NUNEZ Arturo
notebooks-wkbl
Commits
dcffaa00
Commit
dcffaa00
authored
Jul 27, 2018
by
NUNEZ Arturo
Browse files
Automatic commit vendredi 27 juillet 2018, 17:46:07 (UTC+0200)
parent
3e3de1e6
Changes
3
Hide whitespace changes
Inline
Side-by-side
LAM2LUPM/S_T_beta_Mochima.ipynb
View file @
dcffaa00
...
...
@@ -61,6 +61,17 @@
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"hydro = wkbl.astro.halo_info.MochimaHydro()"
]
},
{
"cell_type": "code",
"execution_count": 3,
...
...
@@ -1899,7 +1910,7 @@
},
{
"cell_type": "code",
"execution_count":
28
,
"execution_count":
66
,
"metadata": {
"collapsed": true
},
...
...
@@ -1929,11 +1940,12 @@
"def moments3(rmin,rmax):\n",
" selection= np.where((myhydro.dm.r>rmin)&(myhydro.dm.r<=rmax))\n",
" npart = len(myhydro.dm.v[selection])\n",
" m_2 = np.sum(myhydro.dm.v[selection]**(-2))/npart\n",
" m_1 = np.sum(myhydro.dm.v[selection]**(-1))/npart\n",
" m1 = np.sum(myhydro.dm.v[selection])/npart\n",
" m2 = np.sum((myhydro.dm.v[selection])**2)/npart\n",
" m3 = np.sum((myhydro.dm.v[selection])**3)/npart\n",
"\n",
" return m
1,m2,m3
\n",
" return m
_2,m_1,m1, m2, np.sqrt(npart)
\n",
"\n",
"fdv_moments = np.vectorize(moments)\n",
"fdv_moments2 = np.vectorize(moments2)\n",
...
...
@@ -1944,7 +1956,29 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 74,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"patho = \"/home/arturo/Documents/LAM/LAM2LUPM/speed/\"+hydro.namenospace\n",
"\n",
"v_2_av = np.loadtxt(patho+\"/Eddington/v_minus2_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt\")\n",
"v_1_av = np.loadtxt(patho+\"/Eddington/v_minus1_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt\")\n",
"v_av = np.loadtxt(patho+\"/Eddington/v_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt\")\n",
"v2_av = np.loadtxt(patho+\"/Eddington/v_sq_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt\")\n",
"\n",
"\n",
"v_2_av_m = np.loadtxt(\"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_minus2_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt\")\n",
"v_1_av_m = np.loadtxt(\"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_minus1_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt\")\n",
"v_av_m = np.loadtxt(\"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt\")\n",
"v2_av_m = np.loadtxt(\"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_sq_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt\")\n"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": false
},
...
...
@@ -1953,12 +1987,12 @@
"r_v = np.logspace(np.log10(4*myhydro.gs.hsml.min()),np.log10(3*myhydro.r200),150)\n",
"#m1,m2,m3 = fdv_moments(r_v[:-1],r_v[1:])\n",
"#mm1,mm2,mm3 = fdv_moments2(r_v[:-1],r_v[1:])\n",
"m
m
m1,
mm
m2,
mmm3
= fdv_moments3(r_v[:-1],r_v[1:])"
"m
_2, m_1,
m1,
m2,
sigma
= fdv_moments3(r_v[:-1],r_v[1:])"
]
},
{
"cell_type": "code",
"execution_count":
32
,
"execution_count":
95
,
"metadata": {
"collapsed": false
},
...
...
@@ -2730,7 +2764,7 @@
{
"data": {
"text/html": [
"<img src=\"
HgCAYAAAA10dzkAAAgAElEQVR4nOzdd3hT1f8H8HfSRUtbRssWChRkq0xBFAFFBURFEQFRQAEF/QJuBCEKij8VERDZlLK3bMpeZYQ9WqZAacsqu3SlbZL3749bSkuTzqRJk8/ree4DOfecc0/aK76fe++5BxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHwHoDdAGIBGACo89C2DIBgAJcAPEj7cwwAd8sOUQghhBBCWFI7KCGwD/IeAKsBGJr2JwBUB3ACwDhLDlAIIYQQQljHizAdAJ8FsAPAbQARAEaZqJPRYADHrDFAIYQQQghhWaYCYC0AcQDeBaACUBlKuPs+m37WA5hlpTEKIYQQQggLMhUAJwBY8Fi9HgD+M9PHCABXAVS0+OiEEEIIIYTFmQqAGwAkAribYbsPZcLI40YDiARQw7rDFEIIIYQQlmIqAAYBmJmLtv8AOA/lFrEQQgghhLBzagAeAF6BEgC90j6rADSBcsWvCwC3tLqBAF5Na+sC5RZxGIByhTpqIYQQQgiRb70AGKGEP0OGv7dK298UwCYAN6HcAj4KoF/avlZpdROhvAfwAZRJIw8KaexCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS9GQ7lWbyTuairSav7+JaYTRsVgEoAfGWTTTbZZJNNNtnsfKsEJbs4tEoA4qFMpMhtADRAmZjRI8P2XjZtngJA2WSTTTbZZJNNtiKyVYKDWwxgC5T1d/MSAEvn4RjNAHDr1q2MjY3N9abVagmAWq3W4vVzUzenOnkdX1HZbP29rHV8S/RbkD6sdT7LuVz455Ktjy/nspzLjnJ8S/Wb335MtYuOjn4YAH3zkHOKnFYAUgDUQ94DoD8An1wepxnSfsB5ER4eTgAMDw+3eP3c1M2pTl7HV1TY+ntZ6/iW6LcgfVjrfJZz2Txbfy85l/NWX85l82z9vez5XC5IP6baxcbGOnwAVAM4DmVVDSBvAdAI5ZaxEcp7+OYBKJtNm+oAeOHChTz9YmJiYqjRaBgTE2Px+rmpm1MdW/8HaS15/bkXleNbot+C9GGt81nOZfPkXLZOH3IuFz5T31uv1zM8PJx6vd4mx7enfvPbj6l2zhAAP4PyouWHt3JzGwAHAZgAoBuAzgDGQbmKeBaAt5k2vgAYGxtboF+wvXHUf2iE85FzWTgKZzqXHwYVR/t/q605egAsDeA2gCEZynIbAE3pDuVq4Ldm9ksAFMKOybksHIUzncsSAK3D0QPgFADnALhmKCtIAASAawA2m9nni7RnAMPDwzNttro1Ywm2vr0khKXIuSwchTOdyxIACy4mJiZLLnk4MQQOGABrANBDuQUckLZVBbAfwJm0z6Xy0e8BAIfN7POFmWnWGo3G1r9/IYQQosiRAFhwGo0mu9fAOFwAfBHKLF4DTL/Q2QDlub68igEQYmafQ14BtIZLM37nrX1bbT0MIYQQdk4CYME52xVAPwBvmNjCAEQA6ATltTAAUBlArcfa+5vocyCU8DjIzDEd8hlASzPokni7uJpHm1W29VCEEELYOQmA1uHozwCaYuoZwJ1Qgl1GCQCCAHwBYACAhVCuGh4GUMxM3xIAc+Hk1FG8URxMdgHjoy7aejhCCCHsmE6no0ajoU6ns/VQHIqzBsATJsr0j5VNg3K18D4AHZTJJL8AKJ5N3xIAk5NpvHs32yqHmj7Bje835/5axXnoy26FNDAhhBBCPOSMAdCanD4Aal+rz709Wpndfz/yPJNdwJXBIVz6VXdeqlScNBotOoYLJ3cxLPRfi/YphBBCOBIJgJbl9AFw25h+PF+5uNn9oUPe4eEnfVi5MvnOuxcZ6wFe277GYsc3Go08WKcED9fytVifQgghhKNxtgA4HMqzfrl9D2BFAEsB3AMQC2AVgGrZ1Hf6AHg14iT1KvDehVNZdxqNPF/Jk/P79mapUqS7O7m+VWUefKuZxY5/5N/JTHADU9RgTOQZi/UrhBBCOBJnCoCVAMRDWds3NwGwOIDzAK4D+ArAYACRaZu59wc6fQAkyRNVPXng5wFZys9tXsw4d7Br56scNoxs147UfPwz73uqaUxMtMix9zUsw4k1m/NomeLcOepji/QphBBCOBpnCoCLAWxB7lcC+RbKrN9GGcpqAUgF8LOZNhIASW7u+Ry1z1fNUr7jjae548UadHcnL1wg//2XrByQxP/81Tz9t8ZkX8s/aMLlrwVw2dTBjLh9Idvjhm9dzERX8OmqYdQEvMRdjStkW//GqYO8efZorr+XEEII4SicJQC2ApAC5b1/uQ2ABwBoTZRvhHJl0BQJgCQPr5jEu54qGlJT0svi7sXwtpeKf/WbyLZtlbLUVLJSJTL4jeY82ahSln7u3IpivBsY3roe7/m48UZxcE7PBtQb9CaPG9qyMmc92YCTJpG92ixnnBuY8OCOybonF/zFe8VUvO2l4qlVMwr+pYUQQlhFXFwc69aty7i4OFsPxaE4QwBUAzgO4J+0z7kJgCoASQAmmdg3CsqVQVOvg5EASDI5OZF3PMGza4PTy7YP7MBTAcX55JMGLlz4qO6PP5KdO65lijrrOwG3//EZL/h5cP06I5maynurlzDWU81FI9/OcsyLBzYxyRVsWGUPExPJfyYZeNnXldppI7PU3Tv8Q8a7gZ/V+5Bf1XuHce7gvnFfpu9P0sXz1MEN1OtTLfDTEEIIURDyImjrcIYA+BmAuwBKp33OTQD0gzJZZLiJfQOgBMCaJvZJAEyz+7lK3N1budQXd/sabxVXcfmI0SxVikxKelTvyhXSzd3IA4FePPhtz0x9bG9ekb8GtGbJkuTly0pZZPBExnqAW9ZNTK+XlBTH0Ocqc3HNQP7++6N+JwQ8w20v1UqvZzQYuPvdZrztpWLXRn+xd2/yo4/I3k/9wAfu4I62gTxQtwTve4AEuL+WL8+ErrLOD0gIIUSuSAC0DkcPgKUB3AYwJENZbgLgE1AC4Ncm9vWBEgCfMrFPAmCa7T/2Znh1H5Lkjv6vMqy6Nz/4wMBBg7LWffttcmyHLjxd/dGrW+7fu8EH7uArNVayXz+yZUvlljFJnun/Ns+VUfP0BS3Xzv6epyq48b+yHmxQcTcfPHjU74dN/uR1bzUNaVfydn3anldLqPnmC1vYsaPSn15Pvvsu+XbjBdzxcj1O7fABW5RdxdYNozixShMmuIKbuzVnQuxtq/2shBBCmCcB0DocPQBOgbKCh2uGMqtfAdRqtVkWXY6JibH177pQTJ5MLllCXjl7iHoVePV4KO96qhg6ZQw9PckTJ7K22bSJrBFwmjoX8MrhHSTJHRO+ZERJdw4cYGRCAlm3LjliRFoDvZ7nG1XlOT8wwV3Fo5+/x+efTaJGk7nfUZpE3i2mYtiamdz/55eM9QD7tl/A5s3JhIRH9ZKTyfbtSZVKCZp79ijle/eSnZ5awqNlvLizcSUaDQZL/7iEEELkQAJgwcXExGTJJVqt1mEDYA0oy7t9BiAgbasKYD+AM2mfzb3OpUDPAJraNI+nEwc1eTLZpIny99NPFOPZKl48VtOX/0wysJmZ1/3p9cpkkB0NynFX7zYkye0vVObEwJZcv16pc/Ik6eVFbt2a1ibmBi999DYTz5xl585k06bMdPWPJMPCyPlVqvLAU2UY5w6O6DSCdeqQt01czEtMVILf44uSJCeTn/c+zRgvFUN/HZjPn4oQQoj8kgBYcBqNxmQ2gYMGwBehBDUDlKt5j28GAOOyaX8QpmcBbwLwn5k2Tn8F8MED0tubPHSI3PpeMxLgofl/sFEjcvp08+2+/578vu1XjCjjxgcPbvNuMfD5MouY8fWAQUGkpyc5dCgZH08aDOSHH5L165sOdUYj+XG9L0iAkzp0YaVKZGRk3r9TbCzZLXAo7xZT8eqZg9nWTTWkUrspiOu7N+GGPq1oMDNjWQghRO7ILOCCc7YrgH4A3jCxhQGIANAJymthAKAylHf8ZZTdewB/MXNMeQaQ5CefkB9/TJ7dvZKb3nqKhw8bWbx41it0GZ09S/p43uf9Yiqu7/ksr/i6slPHrLdcjx8nW7Qgq1Qhu3QhAwPJa9fM9ztkUDy71R/NkiXJ8PD8f6dffyUX1Qzkofp+6beCk+7f5on5f3Lnj30Y0r8t171ei6fKuzDRFTzyXHVeKeXKbZ2fkVvHQggh7I6jPwNoiqlnAHdCuSqYkTeUK303oEwGGQJlFZAoKOHSFAmAVEKalxd5757yeeBAZbZtTpo3J9c1qc0UNTizTjNOmWK6nsFAzppFtmpFRkRk3+fevcpVw9DQPH2FLOLiyKoVIhldwoWhbWvwcAN/JrmCUaVceKx2SR5sWY0HOzfnqb+GMfHmPW7bRi7/Zyev+6q588MXC3ZwIYQQwsKcNQCeMFGmN1G3IoAlyLwWcPVs+pYAmKZFC3LiRGWyRYkS5L59ObeZOpXs3WQyCbCVXxCjoiwzlowTPgrizz/J7o0n8sAzZbh90Bs8FLKO/0wy8Pffyd9+I8eMUWY0+/iQ5csrW8fGq3nLS8U9vdry2OSR3DeiD3d82p47hnbj/hk/8kzoKiYmyPkihBCicDljALQmCYBp5swh69RR/qxbN+vkClPu3SOLeegZ9Pp3fLqB/d02TUwkK1Qg//hDucVdrJhyFfK998hu3cju3cnRo8mjR5Xvm5iohMYXAmfzeFk3HinvwW0BpbiyZmVuC/DnudLuTHIBI0uouf3Pr2jMzQ9JCCGEsAAJgJYlATBNUhJZurRyFWzcuNy3e+890tVVmRRijyZPVoJfv37KLOPcePBACcLTpmXdpvyj59CG/XnLU8Vd9f156ej2HPu7ez2C237qIxNMhBBC5JsEQMuSAJjBV1+Rbm7krVu5bxMSQgLKs3v2yGi03C3lh/R68g/NJc6sUpeJruDmtrUYcWir2fohrWuSADd2a2HZgQghhHAajh4A6wJYCuAigAQAtwDsAvB6Ltr2gvnXx5Q100YCYAYxMeSyZXlro9crzw7qnfDi1unTZO92qzm3cnXqXMAtDavw2tljmersXzKB8W5gl6pjeMtTxY2fv2Wj0QohROHQ6XTUaDTU6XS2HopDcfQA2B7ABgAjAHwM4H94NOO3bw5te0EJe8MA9HhsczfTRgKgKLDoaHL0kN38t0olnvNzY9Rp5d2DiQmxDC/nzp9rvc67d8mP2wYz1h3cphlg4xELIYT1yIugrcPRA6ApKgDHAJzOod7DANgoh3oZSQAUFnMlKoULqz3Jc36uvBi2j0t7tGF4KU/u3aW8HVunI//Xdgzj3cB9s/LwoKUQQhQhEgCtwxkDIACsAXAthzoZA6A3AHUu+pUAKCwq+nIqF1atw/OlXRjnBo7pGZRpf3IyqWnRkzFeKkadPJBp382os9z115e8ffVCYQ5ZCCEsSgKgdThLAPSC8vLm6gC+gLKax9wc2jx8BvBB2p86AKuhrDFsjgRAYXFREakMqtqMUwNb0dQjMPfukXMCn+ThSsWZFH+fJHliy3JeKOXKK8VdqHMBd9Ty58bvP2JyUnwhj14IIQpGAqB1OEsAnIJHkzj0UF7uXCKHNu8CmAWgJ5Ql5H4CEA8gBkAlM20kAAqruHOHvHnT/P7jh+7zkL8XV7esw41jv+d9D/DPum0ZukvPP77ayV8bdODZku48XtGTp7ctL7yBCyFEAUkAtA5nCYBPAmgLJcytAbAc5mfyZqcllNvCk83slwAobGbh3/t5u5iKcW7giNbfZHldzd5dD/jnky2Z4AqGfPgSU3SJthmoEELkgQRA67BlAKxigS2/g94EQJvPtvsAnDezzxcAtVotw8PDM20xMTG2/l0LJzDhixX8c8hasyuv3L9PftYhmKdLuXNPvTLUxcs/qCL/4uPj+c8///Ddd99lfHw8Y2NjWblyZSYlJdl6aMKB6PV6hoeHU++M7wezkJiYmCy5RKvV2iwAPnynXkG2kfk8dr+09jXz0XYJgNtm9vlC+WFm2TQaja1//0KQVF5mPen3y9SWKc7Q2mWoi7tv6yGJImrhwoVMSUlh/fr1eTPtGYVOnToxLi7OxiMTQmSk0WhMZhPYMAAeAzA7H1twWvv8BsBBUAJgk3y0PQTgjJl9cgVQFBkrF0Vyf9ni3F3Dn0mx92w9HGHHZs2aRT8/Pz7//PO8du1aevmDBw947NgxvvLKK+llU6ZMscUQhRDZsMcrgPkNcLltX8ZEmSuAI1AmdHillZUHUAuAS4Z6/ibadkg77jgzx5NnAEWREro1ivvKeTOihCv3VS7JrYHluaFOAHdU8+fR8l68WNKVqxsH8vzB3bYeqrCREydO0N3dnbt27WL16tXZs2fPTPs1Gk2m0Dd9+vTCHqIQIh9s+QxgHIChVm7/L4CtUILixwCGQ3kBtAHA4Az1gqEEuyoZys5Dud37DYD+AKYBSAEQAdPBEpAAKIqg0yevc2zP7/hn54854ZW3OanNqxzfsTvHdf+a4z/6jUuqV2eiK7j0ufrULprK/VN+ZOiP/bhneC/G3bxi6+ELK+vcuTNbtWrFxMREVq1alV9//XWm/Z999hnXr19PkgwJCeGlS5dIkrt27eKQIUO4efNmrlq1isOHD+fevXs5ZMiQ9GcEJ0+ezE2bNrFr1668du0a79y5wy1btnD06NFcs2YN+/btW7hfVggn4uizgLtCmfBxDUAylGf3NgHo+Fi92VBeD5MxAI6CcqXwLpR3AEYA+Bvmwx8gAVA4IIOBnPfrKq6tUpExnmqGlfLgtvIlqS3rxTvFVFzf4zXG37lh62EKK7hx4wZdXV35999/m61z9OhRDho0iMHBwQwJCUkvv3z5Mrt3787U1FSeOHGCI0eOJEn27duXycnJXLNmTXq/7733HkkyKiqKJNm/f3/Gx8fz/n15PlUIa3H0AFjYJAAKh2UwkDEx5PXr5NWr5AGtgd92GsN9ZYvzpqeKm+s+wX/bNOXK3l15ZvsGWw9XWMDEiROpVqt59uzZPLdNSkpinz59SJJ//fUXtVotU1JS2Lt3b0ZHR3PgwIE8d+4c4+Pj+fHHH/PKlSuMj1deVP4wEF6+fNlyX0YUWTIL2DqKSgAsBaC4rQeRCxIAhdO5cd3APz76jX8+14Ez69Tn+if8+MAd3Pjzj7Yemiig9u3bs3z58vlqGxoaynnz5pEkBw4cSKPRyNu3b/OHH37goUOHuHHjRs6ePZvLly/nsGHDuHfvXn733XdctGgRhw4dyu3bt/PcuXOW/DqiiJL3AFqHPQXAlwD8DiXsPVQWwC4oz+wlw/zkC3PqAlgK4CKABAC30vp7PZftSwCYDuAmlEkj2wE0zKa+BEDh9AwG8v/eGcw4N/DfXj1sPRyRT3q9nt7e3uzcubOthyKcnARA67CnALgKwIXHyuZCmZxxHspzfAYoz/XlVnsAGwCMgDIJ5H8Adqb12TeHtioAe6GsBfwDgAEAwgDEAgg000YCoBBpJn31D296qrjqhcZMuJPNOnbCLmm1WqpUKv7yyy+2HopwchIArcOeAmAElNm4D3kCSIQyaQMAfABchnIVriBUUN4/eDqHel2hBMXOGcr8oUwKmW+mjQRAITJYMnUD95X3YoyXmou6dGbC/btMTU7m3sXLOK9bD6786VdbD1GY8fvvv1OtVqfP8BXCViQAWoc9BcAEAGMyfG4NJYB1z1A2CcBVCxxrDZQritlZYqbOVCivoHEzsU8CoBCPiY/Xc8JHw3jcvxhveKl43wN84A7ueKIk73mAa+pV47X/5Fkve9OxY0eq1WpeuSKv+hG2JQHQOuwpAN4F8FeGzyOg3PKtlKFsDICkfPTtBcAPQHUAXwBIhXJ7OTvnAawzUf5R2rjqmdgnAVAIMxITUhn01W9c/tdC3r+rvAdu/6bDXFe1HGO8VFzWvxcv7N1KY2qqjUcqSNLPz4/+/v62HoYQEgCtxJ4C4BEAJzJ8Pg7g7GN15gGIzkffU6BcTTRCed/fEigTPLITB2CGifL2UAJgOxP7JAAKkUcpyQaOe/d/POLvySQXMMEVPF62OPdXKsH9lUpwXyVfzmvXlknxsr5sYTlz5gxVKhXbtm1r66EIQZ1OR41GQ51OZ+uhOBR7CoCDoAS0AwBCoYSsx5d6OwFlZY+8ehJAWwA9odz+XQ5lhnF29FBuOT+uTdo43zCxTwKgEPlkMJD/nU/gwon/cmKvwZzYvT8n9fiEk7t+xBP+xRjm78Htc2bbephOYdasWVSpVBw0aJCthyKEsBJ7CoBuABZCCX5GAKsBeGTYXz+t/AcLHGsTAG0OdfJ9BVCr1WZZdDkmJsbWv2shiqw7MfGc+tzLTHAFVzQK5Lyunbh82Lfcv2IxE+NktQhL69u3L9VqNadNm2broVid0WikwWCw9TCEsKqYmJgsuUSr1dpNAHzIF8qM38f5A3gaOd+6zY1+UEJczWzq5PsZQFObRqOx9e9fiCJv+V9rGVS/CdcFVORxP0/GuoMpavBkmWJcWT+QIRMdP7AUhnr16lGtVjM0NNTWQ7Gq1NRUDho0iDdv5u01RUOHDmV0dLSVRiWE5Wk0GpPZBDYMgBMAtILyapbCNAhKiGuSTZ2lMD0LeDpymAUsVwCFKBzxcQZuWRLKaf2+5ewmjRnvBs59/XUaUmXJqPyKjY2lWq2mWq3m3bt3bT0cqxo0aBC1Wm2e2927d4+vvfYak5KSrDAqISzPHq8A6qEEsZsAZgLoCMDdgv2XMVHmCmXCSTyU2cEAUB5ALQAuGep1TRvb2xnKHr4HcIGZ48kzgELY0JLfZjLC14VbAsvz2pnzpNFIkjQaDDy5NYSL+/Xl0mZPc9VIjW0Hase2bdtGlUrFihUr2nooVrVt2zb269cv3+1DQkI4ePDgXNW9ceMGW7ZsyXLlyrFjx475PqYQlmTrZwDLAugPIASADkrgegBgMYD3YPpWcF78C2XSyEgoK4EMh/ICaAOAwRnqBUN5vrBKhjI1gH1QVv4YgUcrgdyH+VvHEgCFsLFTR//j+mplSYAGgHFuypbkAu4r78N59evyrge4pkF13oi4aOvh2p1ff/2VKpWK7dq1s/VQLMJgMPCLL77gF198wZdffjn9il+zZs0YFhZWoL4bNmyYp/ckVqtWTVZWEXbD1gEwIx8APQAsgxICjVDe+bcOSngzdTUvJ12hTPi4BmUt4dtpnzs+Vm82lKuRVR4rz7gWcByAbZC1gIWwe6kpBu7depIbF+/m8smruXT8ckZGPEjfv3v9YYYElOX14moufvl5Lm3ZkGuers6VjWow6swpG47c9t5++22q1Wp+8cUXth6KRYwaNYovvvgiQ0NDWbJkSYaEhPDo0aNs2bJlgfueNGkShw4dmqu6t27dokql4t69ewt8XGcTFxfHunXrMi5OXgVlSfYUADPyANAJSjC7BSUMpgLYDeXKXYDthpYtCYBCFBHJOgPHdxnARU8GcuZTDTmp+UtcV7UCL5R05aGQjbYens0EBARQrVYzKCjI1kOxiMDAQI4ZMyZT2a+//soRI0YUuO+TJ0+ydu3auaq7YsUK+vj4UK+X51PzSl4EbR32GgAzUkN5995EAJFQwqABynN89kYCoBBFWEJ8Kmc1bsZbniqu/euf9HKdLoGpqck2HFnheHiVSq1W88iRI7YeToFFRkaavOrWrl07rl27tsD9G41GlixZklevXs2x7pAhQ9i+ffsCH9MZSQC0jqIQAB/XBMqScKdtPRATJAAKUcQZjeTUTt0Z7wZeLOHCex4gAd7yVHFV/apc8PkgXr982dbDtIqNGzdSpVLR3d2dycn2FXh37tzJUaNG8aWXXuKBAwfSy1u2bMnevXtnqhsfH88PPviAzZs3p7u7Oz/44AN+8MEH6c/rlSlThhcvmn7+My/HIcmmTZty06ZNmcqMRiMnTZrEAQMG8JdffuH48ePZqFEj/vHHH/k+jjOTAGgdRTEA5kUTKKt5hEOZ9RsJZRm47N7/91AvPFo+LuNmgPlVRCQACuEgQmau4MKRE7n6n5Xcteoo542cyVnNnmOYXzEmuYArG9TgnrkLbD1Mi/q///s/qlQqPvXUU7YeSib37t3j6NGjSZKvvfZapucTP/zwQzZo0MBku2HDhvGZZ57JVGYwGKhWq3n79m2LHOeVV17h1KlTM5W9//777NSpU/rnefPmUa1W8/DhwwX6Ps5KAqB12GMAVAOoDKAFlHcEmtpyaxmAqwDGQ3mB8zAA16FM6KibQ9teUMLeMCiTUzJu5l5VIwFQCAdnNJLrZqzk3KfqMs4NPFzeh4vf78ErZ4v+5JHu3btTrVazT58+th5KJgsXLuTly5d5584dFitWjOvXr0/fd+3aNb755psm23Xo0CHL1bSbN29SrVYzNTXVIsd57733+Ntvv6V/njp1KosVK8Zbt26ll61YsYKlSpWiMe21RPn9Ps5KAqB12FsA/AZADJTgld2WW82hvPcvoxpQZhfPzaHtwwDYKA/HkwAohBMJOxLBCa925t7yPkxRgzsDSnL2mx24/q8/efd6lK2Hl2cPVwCZNGmSrYdi0p9//smqVatmKouMjOTEiRNN1q9YsSInTJiQqezWrVtUq9XZ3uLOy3G6devGsWPHklRu/QYEBGQJcAMHDuRbb71V4O/jrGQWsHXYUwD8Ecot1lsAggCMBqAxsxXUYQCHcqiTMQB6Q7kymRMJgEI4IaOR3PnvQU57uTNDAiow2tuFBoBHy3lx3e+/5dyBHUhOTqarqyvVanW+VscoDM8++yy/++67TGXjxo1jZGRklro3b96kSqXirl27MpUbjUa6uLjwxo0bFjnOq6++yjlz5pAkz5w5Q5VKlSVA16pVK0sQzetxhLA0ewqA0QAuwDJr/ebmWCE51Hn4DDv126YAACAASURBVODDdxLqAKyGcgXRHAmAQgimpJC714dxUptOvO8BbniyAo/t2EldYhwjwk4wdPlqXr1oXxNJTpw4QZVKRTc3N7td4szLy4srVqxI/5ycnGz2fYWbNm2iWq02+e9x+fLleebMGYscp2nTpgwJCSFJHjt2jCqVirt3707fHxUVRZVKxfDwcJ49e5bLli3L13GEsDR7CoCJAMYVwnF6Qgl0vXKo9y6AWWn13wDwE5SJJDEAKplpIwFQCJHJoe1hXFynFlNVymxipq1OkqIGd1cuxTlvvsWjG7emL1tnKwsXLqRKpcoyacKe1KpVK1OAGj58OKOiTN9qHzNmDAMDA03ue+mll7hy5UqLHMfPzy/9il1ycjKfeOIJrlu3jiSZmJjIN998k66uriSV9w/evHkzX8cRwtLsKQCehPLiZ2uqDWUpt1AAqny0bwnltvBkM/slAAohTNq7/hj3h5zg1cgHNBjIPWtDOfX1LtxapTST1eBlX1eubFSLa4d/xdTkwr8CN3z4cKpUqgKtj2tt+/fv59tvv83Ro0fzu+++y/Zdhe+++y579Ohhct/o0aP59ddfF/g4p0+fZkBAQKYyrVbLd955h6NHj+bIkSN57do1dunShV999VWWZ/vy8n2EsDR7CoCfQnn+r7yV+i8H4CKAiAIeYx+A82b2+QKgVqtleHh4pi0mJsbWv2shhJ2KOB/DaQNHc8bTjXnJ15XHy3ly64wZhTqGzp07O9QKINWrV+fcuXNN7jt79iwbN25c4GNMnTqVQ4YMKXA/QlhbTExMllyi1WrtJgACyi3gi1BuzzaAsjavqS2vfAEcgxIwaxVwjEugrCls7jg0tWk0Glv//oUQRUDkxfuc8txLjHcDlzxTi8v/bxz3rFjB6HPHmWLFK4O1a9emWq3muXPnrHYMa5s5cybHjh2b/noVU+/6e+jVV1/lwYMHC3S8xo0b8+zZswXqQ4jCoNFoTGYT2FEA7AXgLrJ/BYw+j316QFlDOA5AMwuM8RCAM2b2yRVAIYRF7Fq+k+sDn+AlX1c+cFeeHUx0BQ9VKM5ljepyXs8PeWzjVhoNhgIfKyUlhW5ubvT397fAyG3H19eXH3/8MefNm8eBAwdmW/fIkSPs2rVrvo+1bds2WbGjkOh0Omo0Gup0OlsPpciy9yuAfaEEvGQA2wDMg/JMoKktt9RQZu4mA3g1m3rloVwZdMlQ5m+iXgcoE0jMTVaRZwCFEBaXnExePBPHlZM3cnL3/zGocROGVvSlzgWM8nHhqvqBnPtOF676eSz/O3wyzxNKHs4AfuONN6z0DQqHRqPh8OHD+emnnzI+Pj5X9TNOwsituLg4vvrqq7xz505+hinySF4EbR329AzgWSirdFSzYJ/joQS2VQDeN7E9FJxWL+Pt5fNQbvd+A6A/gGkAUqA8Q1jGzPEkAAohCk30pdsM+ub/OKPFc9xYtQwvlnAhAUZ7u3B5g1pcNOgb3ryc86zS+fPnU6VSZVrRwhkYjUZ+9dVXvHr1ap7aff311wwLC7PSqMTjJABahz0FwCQAf1u4zx3I3Yois6HcWs4YAEcBOALllrQOSvD7G+bDHyABUAhhY9GXrnH+8F8Z3LQRw/zcqXMB19auxo2/T6HRYPrK4HfffUe1Ws09e/YU8miLJlPLyAnrkQBoHfYUAC8AmGrrQRSQBEAhhN0wGsn1c1YzqOnTvOUJni/pwfmvd2H06YuZ6rVr146enp7ZLo8mhK1IALQOewqAIwFEAfCx9UAKQAKgEMIuXb16k5M+6MNdT/gwyQVcUzuAc/oO5Oo/J7NUiZJs07q1rYcohEkSAK3DngKgK4DlAA4AaA3LBMEmACYBCIeyikcklOf6auayfQkA0wHcTGu/HUDDbOpLABRC2L2QeasZ3LQJ95f34R4vFVUAh7mACxs9xZ2L1th6eEJkIgHQOuwpAD58Ls8Iy70GZhmAq1Amg3wEYBiUiSZxAOrm0FYFYC+UtYB/ADAAQBiAWACBZtpIABRCFCmzZs2iWq3mr59/yxV1qjPJBQytVILB/QczPjbO1sMTgnq9nuHh4dTr9bYeikOxpwC4E8qkjdxsudUcypXFjGpAmXAyN4e2XaGE0c4ZyvyhTAqZb6aNBEAhRJHStWtXli1bNv3z+WNn+W2zFuzvoeI4dxXbVijP1ZOCeDdGXnkihCOxpwBYmA5DeaFzdpYAuGaifCqUK4huJvZJABRCFBmJiYn09vbOtC5uUlISAwMDGfcgjgu/H8PepX2ocQH1KvBcKTeufbIyZ7fvyFW/TeSdazdsOHohREEUxQDoYYE+ogGE5FDnPIB1Jso/gnIrup6JfRIAhRB27dlnn2WvXr1IkpMmTaKXlxcvX76cvj8kJIStM0wICQ0NZdMmTXl0+0HO++YnznzpZa4PLM9obzX1KjDMrxhXPPUk53R/n2f2FmxpNSFE4bGnAPhdLuq4I+fglpOeUG7t9sqhXhyAGSbK20MJgO1M7JMAKISwa1WqVGG3bt14/Phx+vv785dffsm0f9q0aezcuXP651OnTtHb2ztLPwaDkQc2H+TMT7/lrObNubNSSepcwA01K/Lfn8fSoC/4EnVCCOuxpwBoANA9m/0uANYg8wuc86o2gPsAQqFM8siOHsoM4se1gRIg3zCxTwKgEMKu7dixg4GBgSxVqhSHDRuWZf+YMWPYvXv39M8XL16kWq3OVd+7V4cyqPmzvOWp4sUSrlz6TB3OHTCEF8NOWWz8QgjLsKcAuBvKihttTOxzgfKKGCOACfnsvxyAi1BW9Cifi/r5vgKo1WqzLLocExNj69+1EELkaNKkSezWrVv65xMnTtDPzy9Pfdy6fpfBQ0ZybpNGPOFfjAaAF0u4cu2TlTjrlVe4+IdfeDHsnKWHLhyUzAIuuJiYmCy5RKvV2k0ALAngNIB7AOpnKFcBWAAl/E3LZ9++AI4BuAWgVi7b5PsZQFObRqOx9e9fCCFytGXLFrZp0yb987Zt29ioUaMC9Xnu+EUuGPYbZ77cnmtqPsELJVxJgBG+LlxZO4DBn37BG5HXCzp04aDkPYAFp9FoTGYT2EkABJS1eK9BWRGkUlpZEJTwNyeffXpAuboYB6BZHtothelZwNORwyxguQIohCiqkpOTWaVKFT548ICk8j+On3/+2eLHiTgVwUUjx3J2y5Y8XdqdSS7g5mplOeu1Dlzz52TG3btn8WOKokkCYMHZ+xXAh56G8rLlMAAzoYS/JQDU+ehLDWA1gGQAr2ZTrzyUK4MuGcq6QrnS93aGsofvAVxgph95BlAIUeStXbuWX375JWfNmsUBAwYUyhrBO5ds4Mz2r3NDYAXGeKmocwGPlPPi0mdqMbhrN4b8M5Oxt29ZfRzC/kgAtA57egYwo3ZQQpsBwEpkDmZ5MR5KgFwF4H0T20PBafWqZChTA9gHJYyOwKOVQO7D/FJyEgCFEKKA9KkG7ly6lTP7DGbws89yW2U/3vRUUa8CT/l5cGW96pzTszcPb9xOo0FmGzs6CYDWYcsA+GEO21ooz+z1M7Evt3Yg+2XlHpoNZdZvlcfaZ1wLOA7ANshawEIIUehSUwzct17LWQOHcdZzLbm3gi+T1WCkjwuXPl2L878axts35FEbRyQB0DpsGQDNrflrzPCn0URZQV4DY20SAIUQopBcv3yTC74bw3mNG/JCCTcmuoK7KpfgvBaNOe/TAdw2Zw43zwzm2gnT+O/v/1C7fgcT4xJsPWyRRxIArcOWAbBXATZ7JQFQCCFswGgwcuu8DZz+Tm8ubFCfB8t683YxFW94qRnt7cIoHxemqMFUlfJKmo3Vy3F2u3ZcPnosb8mSdnZNp9NRo9FQp9PZeigOxV6fASyqJAAKIYSdMBozf9Yl6HggZA8XjxzLGR3e5JqaTzDSx4XxbuDyBjW4bsI0eaZQOA1HD4DFAfwEZfm4O1BuIef2GcJeeHQbOuNmAFDWTBsJgEIIUYQYjeS66Us5v2ED3vMAz5ZyZ0iNClzSsA7ntn6Bcz7szZB/JvPaxbM0Pp4ohSjCbBkATwMYaOX2AVBCWwSUCRwG5C0AGgAMA9Djsc3dTBsJgEIIUURdj7rFmZ98w2kdOjOoxXNcUu9J7qpUkleLq0mANz1V3F/Jh8ufrsng19tz0bfDuH/NBuoS0p4rNBqpT0qkITXFtl9EiFyw9SSQkVZu74ZHV+saI+9XAA0AGuVhTBIAhRDCwej15MmD0Vz4yxxOfu9Tzmz+PNcGPsEwv2LUuYApajDRFTQAJMB4N3BP5ZJc3KYF1/00jNfOhdn6KwiRha0D4HYoIS4/mwF5C5AFCYDeyN2LqCUACiGEE0mMT+Ge1bu5deFGhq7bw4M7TnDFpGWc+EZPzq9dk+Gl3WkAeKmEK1fXrsxFDetyUcO6XNywHuc834JBH/blmgkz+d+JszJDWRQqWwfAgm7WDoBGAA/S/tRBWVWkRjZtJAAKIYRIp9eTR/ZcZvDXYxjU5mXOea4Fg1u0YHCL5lzSoBb3VPTlDS8VmXb1MNEVvOGl4n8lXXmsrCdDK5Xg0qee5JxPB/Ni2Flbfx3hQGwZAF+0wBaQh+PlNQC+C2AWgJ4A3oAymSQeQAwerVP8OAmAQggh8uxGdAxP7j3Gncs2cu2kuVys+ZNz/jeMs3r259xmTXjCvxj1KjDcz4Obq5XhkoZ1Gfzaa9w+d4nDz1yOi4tj3bp1GRcXZ+uhOBRHnwWcUV4DoCktodwWnmxmvwRAIYQQVhG+L4xz/vcDp7/RlbOffZZrAysyzk2ZuTz7xRe48s9pvH3jtq2HaXHyImjrkACYd/sAnDezzxcAtVotw8PDM20xMbJEkRBCCMu6FnWTQf2/4NqalRjjpWKqCjxRphhX1KvO4Bdf4Owevbhs5BhumbmAJ3bs5Z1r14rcFUMJgAUXExOTJZdotVoJgHm0BMBtM/t8ofwws2wajcbWv38hhBAOzKA38ODm/Zz96dec1ao1l9arye2VS/NMKTfe8lRRr1KeM0xWg9eLq3nKz4Obq5djcNduDAvdZ+vhmyUBsOA0Go3JbAIJgHlyCMAZM/vkCqAQQgi7lJiQyjPHL3H70q1c9mcQZ3/5E6e168DdlUowVQWeK+XGI+W8eKh8cWoreHNB88bcPnexza8YSgAsOLkCaD4AlgdQC4BLhjJ/E/U6pPUxzswx5BlAIYQQRc654xEMHvITZ30ylDP7fc3pPQdyRe1qjHcDw/w9OLtDe57ed9AmY5MAaB3O8AzgZwCGQ5m4YQSwPO3zcAA+aXWC0/ZVydDuPJTbvd8A6A9gGoAUKKuKlDFzLAmAQgghHEb0xRuc3uMTbq3sxxQ1uKtySQZ3e58h/0zntUv/FcoYivIsYO36HTxQ3pvLfxlv66Fk4QwBMALKzF1T28PANxuAHpkD4CgARwDchfIOwAgAf8N8+AMkAAohhHBQh7cd5bRXOjG0Ygle91KWx7vlqeIVbzVveKl4u5iKByp4c26fvnxw546th2tz0Rciebq0O3c9UZJxbuC8wcNsPaRMnCEAFiYJgEIIIRyewUCePnqZy8bO56IxM7l83Dyu+mcJp77+Lk+V9uDtYioua1ibwa+8zNnd3ue8wUN5fEfuJpoYDQbuX72FQd0+5NznWnB5g5rcXK0sV9epyq2zFlhk/LNfaMkT/sW4sGE9zu43iKcPWna5vqSEJG4L8OOWAH8mJSRxzmffMs4NDHr/I4sepyAkAFqWBEAhhBBOLTXFwHkjxjO4cWOuqF2NWwL8edy/GFNVYKSPC1fVrspFjRpwfY2K1Fbw5kl/D+6r6MPN1cpyQ40KjPZ2oc4F3FPRl4uerstZL7TitDfe47xGTzPeDdxatQxX/TaRqcnJ+RrfzM7v8qanikEf9ueCJs/wWBlPxrmBC38YY7GfwcJGTzHcz4NRF6LSyxb/NI73PcB5zZsx9o7tc4KjB8DiUFbwCAFwB3mfBVwCwHQAN6GsArIdQMNs6ksAFEIIIUy4FnGdC4b/xlmtXuScZ5tyRoc3OavP55wzRMMZvT/ntLe6cforHbngh7GMuXLLZB/h2nDObt6c9zzA+x7g9gA/zm7bhst++p0xUVdzHMOCb39kvBu48o+pmcpn9xnIeDdwbgFu02rX7+TMjm9yb0VfxnipqF2/K0udbfNX80hZL4b7eXDDlHn5PpYlOHoADIAS+iIAbIPy3F9uA6AKwF4oawH/AGAAgDAAsQACzbSRACiEEEJYWUJcEtdOXsjpb3ThylpVeNnHhXoVeKysJxc1bsA5/f/H4zsf3XI2GgzcOGMhY93BoI//Z7LPuZ9/x3g3MKjv55nanT5wgouG/cJZr3Xkoob1uaDxU5zXrDHnNm/Kf+tU455KvozwdWGyGtxWxY8z3+7GUwdOmh/7gwQGtW7DBFdwfrNG3LVoleV+MHng6AHQDUDZtL/n9T2AXdPqd85Q5g9lUsh8M20kAAohhBCFzGgkD245wJl9B3N+46d5pKwXU1XKJJX7Hkh/Cfasl9pl28/C735mvBuY4ArqXMBUFWgAeL6kG9fVqMg5zZtybrPGnN/4aS5s2ICz2rzEWR9+wqWjxzPy3OU8jXnDtIVc/WRlJroqwXXOm2/w/JFjBfkx5ImjB8CM8hoAlwC4ZqJ8KoA4KOHycRIAhRBCCAvS6XTUaDTU6XR5anft8g2umhDMjUHLuX99KC+EXcxVuzOHwrlryQbuXbWFB9bv5PXL1/Mz7FyLOBvNKe9+zB2VSjFFrdzWDur9Ce/csO5MagmA5p0HsM5E+UdQbiXXM7FPAqAQQghhQc70Iuj9Gw9yRrsODPfz4LXias7s0Ikx0dZZSUwCoHlxAGaYKG8PJQC2M7FPAqAQQghhQc4UAB8y6A2c+8UPPFzWizFeKga3bMGlP43l/dv3ctX+yqUoHgjZmW0dCYDm6QFMMlHeJq2fN0zskwAohBBCWJAzBsCHDHoDF3w7iivqVOcVbzWTXMCD5YvzcDkvnintzghfFx4r68mNgeW4qHF9rqgfyNOl3WmA8vzitoDSXDZ6rMn1nCUAmpfvK4BarTbLossxMda5hCuEEEI4MmcOgBkZ9AZuX7KBMz/6nLMHfMO53/3CxaP+ZtCAoZz2+jsMbtaUQS2f55zBIxi29yTPHzvL2S+8wDvFVNxYxoujn3+ek77/kUcOHmJ4eDi1Wq0EQDPy/QygqU2j0dj63BFCCCGKHAmABXPl0lV2qlXXZDaBBECTlsL0LODpyGEWsFwBFEIIISxDAmDBxcTEMDw8nMeOHefU0eMZPG6aXAFMUx5ALQAuGcq6QrnS93aGsofvAVxg5hjyDKAQQghhQXq9nuHh4dTr9bYeikNxhmcAPwMwHMBkKAFwedrn4QB80uoEp+2rkqGdGsA+KCt/jMCjlUDuA6hp5ljpAXDx4sV84YUX6OvrS7VaTYOJBzCz8+KLL9Ld3Z0+Pj709vamj48Pp0yZYqXTQAghhBDOxBkCYASUK3mmtoeBbzaUWb9VHmubcS3gOCjLyeVqLeDNmzdz8eLFDAoKylcAbN26NUeOHGmlX7sQQgghnJkzBMDClOUW8M6dO00GQK1Wy9atW9PPz49Vq1bliBEjMl3ebt26NUeMGFFoJ4IQQgghnIcEQMvKVQA8e/Ysvb29uXTpUhqNRkZFRfGZZ57hmDFj0uu0bt2a/v7+LF26NOvUqcOhQ4cyPj6+UE8OIYQQQjgmCYCWlasAOGjQIPbo0SPTL2LBggWsUaNG+uf9+/fz3j3ljd8nT55kw4YN2a1bNyufDkIIIYRwBhIALStXAbB9+/b09PRkqVKl0rcSJUrQ19fX7C9q586ddHNzy/Ni2EIIIURRJrOArUMCoGXlKgD26dOHH3/8cZ5+Ubt27aKbmxuTkpIs9svPrZiYGGo0GnmXoSjy5FwWjsKZzmV5D6B1SAC0rPQAaDAYqNPpuGnTJqrVaiYkJFCn09FoNPLQoUMsUaIEly1bxpSUFBoMBl64cIEbN24kqfyHvXHjRiYkJJAkw8PD2aRJE3bp0sUmJ0l4eDgBMDw83CbHF8JS5FwWjsKZzmUJgNYhAdCy0gNgcHAwVSoV1Wo11Wp1+t937dpFkjx48CBfeeUVlilThqVKlWLDhg05ffp0kmRkZCSbNWvGkiVL0sfHhzVr1rTpJBBn+odGODY5l4WjcKZzWQKgdUgAtKzqAHjhwoU8/RLyeik/L/VzUzenOo76D42tb6FY6/iW6LcgfVjrfJZz2Tw5l63Th5zLhc/U9y7MAGjP53JB+snu5woJgBbRDGlrAedFXv9Dzkv93NTNqY6j/kNj6+9lreNbot+C9GGt81nOZfNs/b3kXM5bfTmXzTP1vQozANrzuVyQfrL7uUICoEU0A8BVq1YxOjo619u2bdsIgNu2bbN4/dzUzalOXsdXVDZbfy9rHd8S/RakD2udz3IuF/65ZOvjy7ks53J0dDRPnz5NADx9+rRNjm9P/ea3H1PtTp06JQHQgt6B8sOUTTbZZJNNNtlkKwpbI4gCawaAW7duZWxsbK43rVZLQLl1bOn6uambU528jq+obLb+XtY6viX6LUgf1jqf5Vwu/HPJ1seXc1nOZUc5vqX6zW8/ptpFR0c/DIByBdAC5BnAIsTW38uenzWR56aKFlt/LzmX81ZfzmXzbP297PlcLkg/8gyg9cks4CJEZk5apw+ZOVn45Fy2Th9yLhc+U9+7MFcCsedzuSD9yCxg68uyEogjcNR/aITzkXNZOApnOpcfBhVH+3+rrUkAtCwJgELYMTmXhaNwpnNZAqB1SAC0LIcMgLa+vSSEpci5LByFM53LEgCtQwKgZTlkALSGW7P/Ydz+XbYehhBCCDsnAdA6JABalgTAXLpcwYuHXnva1sMQQghh5yQAWocEQMuSAJgLCVEXSYA3SrqRRqOthyOEEMKOSQC0DkcPgE0ATAIQDiAeQCSAJQBq5rJ9CQDTAdxMa78dQMNs6ksAzIUTE4bzbFkXJrqC9w7vtfVwhBBC2DGdTkeNRkOdTmfroTgURw+AywBcBTAewEcAhgG4DiAOQN0c2qoA7AXwAMAPAAYACAMQCyDQTBsJgLmwv1NDrm9fh3vqePPodx/aejhCCCGE03H0ANgcgOtjZTUAJAGYm0PbrgCMADpnKPMHcBfAfDNtJADmwqUKxTio1SBOeLU1TzZ+wtbDEUIIIZyOowdAcw4DOJRDnSUArpkonwrlCqKbiX1OHwCvDh/Eq+N+Mrv/QeR/NKjA8n4n2enF6Ux0U9GYlFSIIxRCCCGEswbAaAAhOdQ5D2CdifKPABgA1DOxz+kD4PoeTXnwpTpm9x8eP5ThFdxZogSpdk/gFR8w6t/gQhyhEEIIIZwxAPaEcmu3Vw714gDMMFHeHkoAbGdin9MHwM2/fcLzAT5m9+95/WkueLY+e/Qg69cnVzWpyMM9XyrEEQohhBDC2QJgbQD3AYRCmeSRHT2UGcSPawMlQL5hYp/TB8AjOxYyyRWkmUW7L1Qoxs9afMkZM8ivviKHt3+fFwN8LTqGC4e3MGz7Yov2KYQQQjgSZwqA5QBcBBABoHwu6uf7CqBWq2V4eHimzRmW6yHJ2Pg7THIB7xzbn2Xf3ctnaQBY1vcUL14kN28ma9fdQb0KTL4aZbEx7GpdnQeeKWOx/oQQQthOXFwc69aty7i4OFsPpciKiYnJkku0Wq1TBEBfAMcA3AJQK5dt8v0MoKlNo9HY+vdfaMIruTHsnx+zlGvHfc3TFTxYpYry/uekJLKYp4HHKrnyzPgfLHJsg0HP6z5q3vBR02gwWKRPIYQQtiMvgi44jUZjMpvAwQOgB4DdUK7oNctDu6UwPQt4OnKYBezMVwBJctvzlbi/72tZyne93oALmz3FXr0elbVvT856sR6PtWtgkWOf2b6U8W6gXgVePX3QIn0KIYSwHQmABeeMVwDVAFYDSAbwajb1ykO5MuiSoawrlCt9b2coe/gewAVm+nH6ZwBJckO/Njz0XLUs5ecreHBg0285Z86jsvHjyf5tv2J02WIWOfa2zzpy/RNlGVa6GPf9PdQifQohhLAdCYDW4ejPAI6HMmFjFYD3TWwPBafVq5KhTA1gH5SVP0bg0Uog92F+KTkJgCR3/PMNI8pnDnQ3zh+jXgX6Fz/PqAyP+505Q1Yot48EmHL7Zrb9RtyL4MW7F7Ots79OaQ6p1oVBVWowpMtz+f4OQggh7IMEQOtw9AC4A8pVPHPbQ7OhzPqt8lj7jGsBxwHYBlkLOEdnDm9iqho0JCakl4X+1JfHqhRnjRqZ6xqNZOUqBkaWUPG/ZdOy9JWYkshVa8dy5jvVeaIsuP7Z0maPmxB7m4mu4AftQjj86a7c86Sfxb6TEEII25AAaB2OHgALmwRAksmpOt73AK/sXp9etu+5KpzxfCv265e1fr9+5IZa/tQO7pJl39q2lZnsquJ/Levyxk/fMskVjIg8afK4B4N+ZqSvCyeMN/DbLrN4y1OV7USQBxfPMC7ifN6/oBBCiEIjs4CtQwKgZUkATHO0uheP/P4FSdKQmsK7nip2aTKVixZlrbtkCTnmqRd48IXqmcrj4+4yzh2M3r4qvSyikjfX/PS+yWNufasxZwTU5rlz5Iwp95iiBqNPhJqsa0jW8b+KnjwT4E1jamo+v6UQQghRNEkAtCynD4DDh5PjxpFb2gVyb49WJMnTa4J41xN0cUni9etZ20RGku0DhjGyjEem8gNLxvGWl5q7djx6qfSR/p24rVEpk8c+U96DH9X9kkYjefIkecTfk3vHfmmy7p5BnXnaz40XS7pQO+KjfH5bIYQQomiSAGhZTh8A//qLfO01ctPg13mkUUWS5O7ebbmlYSXWrGm6jdFI1qp2mASYdPtGevnGXi9weeWq9PAg//1XKbt7cDfj3cCoq2cy9XH17CHqVeBnvZVJIno9OaNqXLk2wwAAIABJREFUbW7o9GyW4107fZAP3MFOtX7nOzW/5h1PFWOvXLLAtxdCCCGKBgmAluX0AfDYMdLbmwwN+plXSruRJMOr+3Ds6x/yo2wutHV6w8ioEmqeWjIpvexATR8OfKIXFy8mixcnZ8wgaTQyqrwX147pnan97p8+5oFy3lyx4lHZ8Cbvc39g1quFe5tV4sLqVRkURGo0Bm6q6sfQjo/eQ2gw6Hl85xI+eHA7fz8EIYQQws5JALQspw+Aej1ZsiS5YZVyRe/u6aPUq8BXWh7g7Nnm2/38M7mhRjmG/u9NkuT9ezeY5AK+/exOkuSuXWSJEuSkSeSRPq9xSzP/TO13Nq/CUQGteP/+o7LhvebzngdozLAu8b4ZGt7zUPH5p8Oo15P375PPPLGBCW7gqXXB3DGmP09WKUa9CrzlBW5+vQ6PrJtJo9FoqR+REEIIYXMSAC3L6QMgSXbqRP72u4E3vFU88E5znq7kQTc38sIF8202byZH12nNfc9XJUnum/MLr3q78NtvHgWvrVuVEBi1eQsfuINXYpQON4zuxTh3sEuL1Zn6XDjvAZNcwMiDW0mS1y4cZ2QpFw6u/j43bnxUb9QocuJTLWgAeNnfjT836cHaVW7x5fIzuKB6Hca5gRv7t7fQT0cIIYSwPQmAliUBkOTYseTrr5MH6/gy3l3FFa81YoUKyrN+5ty9S75WScNLZZTbxpt6PMvFVWtw7dpHdYxGslkz8q9xRl4pU4xrfu/Lxb/2ZLwb+F2bcRw1KnOfERGktkxx7v75c8bdvcGwAC+ur1uN7V7WZ6oXG0uW87vHvweOY62aKezUSSmLiyODg8n+T33HS6VcaTBkbieEEML6dDodNRoNdTqdrYfiUAozAFYA0AVAgwxlAQCeBeBt7YMXEgmAJA8dUq7UbelUnwQ4us8Yvvdezu2a1g0jAcbGRPFI9eLsU+kT3r2buc7SpWRAAHn4/Zd5pJKa8e4q7vlxLD09ybNnM9c1GskpgfW44eVnePCZMjwQWJIlvR/wxImsx/7lFxIghw5VbmNntHpFPG95qnh48fg8/RyEEEIUnLwI2joKKwC2ApAAZbk1PYDf0so9ALyFzKtyFGUSAEmmppI+PuSyAd0Z6wG2a3eHkybl3O6DD8hoXxfumfw9U9Rg2/oHTfZdrRq5YtQmGlTglfG/slEjcsQI033+8Fxv6lXg6fIerFDyMlevNl1PpyO1WtP7kpLIv6s+zU3P1zBdQQghhNVIALSOwgqAm6Fc/fMBUBfAXAB/pO0rDyUYOgIJgGnatyd//knLRT92ZfHiNHnV7XF//01uqF6B2rq+vFzSjQMGmK43YQLZpAlpvHKVf/xB1q6tBDhTfhy8g3srevHJCvs4c2b+v88n7RfygTv44I6JFxmaEBd3h1cuh+X/gEIIIUhKALSWwgqAP5oo+whAHwDlIFcAHc7//R/51lvkwYPKrOBsVmRLd+AA+VPgyyTA+TXqcuFC0/Xi4pQ+g4JILy8y1PRiHyTJDRuUW7tjxuTvezw0d46RYX7FuGu0ibXsHqNdM4Vny7sxuqSad67J+wWFEKIgJABaR2EFwC/T/qz+WHlHKEFQAqCD2b+fLF2a/OMPsmPH3LXR6cjXK/5MAny/4mBGRZmv+/33SrD79NPs+0xJIdety34Cyv+zd+fxMZ37H8A/M1kkRIgEsROUWlqt0pZW7aVqa+3VxaW9RauUti6ttJS22tKiakmInaJ2EbETxr7FviXEkhAR2ZOZ+dw/TkQik8gyMyeZfN+v13ndO885z3m+w/zcz+8sz5MTkZHkyGpdeLhO6Qzt14P8eU0XwFth53knKozr32vCOAfw0MedeKyhB3e1rJG/gYUQooiTAGgZ1gqATQFMghL0Xnli3xsAHlpycCuSAJgqOVmZvLl2beVqYE61fukS4+01bFwjONvjbt8m33mHGeb9s7QuLU8zSQuGntzD2+cO82DTyoy3BxPsQQJM1oJXKxZn2I51PHCAXD7rGO87a7h/6kjrFSmEEDZGAqBlWPMtYGdkfAM4vRqWHtxKJACm0769cpUuKCjnfT77jCzrEMX+/S1XV179+Se5pXp5Hq1bmtHFwN1vVKdu5ynGPDQyJfIuY04fZfj1BP7nP8qtaXd3ckKHYbxXXMO7l0+pXb4QQhRKer2ewcHB1D85RYPIF5kH0LwkAKYzcSLp5EQmJeW8z8KFSmicNctydeVVSAjZoeIknqvszMMLf+PIkaSdHanVkg0akO+9pzyb2K2bMgfh9evkiy+S/9SuysMNyjLpYZTaX0EIIYQgafsBsASAHwD4A4iE8rbxBzns+2Hq8U9uBgDlsugjATCdS5eUEJgb588rAfDMGcvUlF+NGpF//EG2bk3Wr09evEjevEmuXUt++63y0kl6cXFk/16XecDTmTdK2/PIH9/QmJM3YoQQQggLsnYANJhhG5eL8apBCW3XAGxP7Z+bAGgAMAZAvyc2xyz6SADMJ6NRCVMFdend779XAmqPHsrbyDlhNJJ//ZXEQc/05+0SGh6v48Yd7zbm9tZe3P68B1f3byGhUAghhFVZOwA+CmM787DtSu2fmwDogMdX6xoj91cADQBezMV4EgBt3J075IIFeQuoISFkxzYhnFjndc6t8xzHV23Fb6r14u3iWq7u2YzGgpp6hRBC2Bw1AmBuApw5++cnALoA0OagjwRAkS2jUVnObvly8vJl5fOEQZsY6aThuo/fytE57lw9zYBP2shVQyGEEHkmATBrj54BfJj6n4kA1gGolU0fCYAi14xGclS3JYx2BDeP6EmDIfs33TZ2bUIC3D11lJUqFEII9chbwJZh7QDoDmU6GDX65zYA9gTgC6A/gC5QXiaJBRAOoFIWfSQAijxJSSGHtPyLkU4ahpa249auL/Gc/6JMx0XdC2OkE7ig0jO8UsaeCbFWnAhRCCFUIPMAWoatvwWcXm4DoCnNodwWnpnFfgmAIs9iY8nvRsfy48Y/cEEVLz50BNd+0jvDMWsHd+NhjxL8a3oyT7g7c+PAjipVK4QQ1iEB0DIkAObefgAXs9jnCoA6nY7BwcEZtvDwcLX/rkUhcu8e+X2v3xnjAJ4LCiBJJiUn8FIZO37/xnCS5KgOUxlVDLxz9bSapQohhEVJAMy/8PDwTLlEp9MVyADoDqA7gDcB2JnpnOYKgCsA3MtinyuUP8xMm7e3t9p//6KQSU4mfZ9pxANVXZiUnMCNk0bwRgk7HjsUT5K8dYtcV6kC179eV+VKhRDCciQA5p+3t7fJbAIVA+BgAAcBlEnX1hjAXTye9+8glAmd88tcAfAwgHNZ7JMrgMKsThyI5CVXRy7t15b7qpXglMbdMuyf9r9tjLcHTwT8o1KFQghhWRIA868gXgHcBUD3RNsOAHoAPgA2QAltI80wVnYB0BNAHWS82uhh4ri3Us8xJYsx5BlAYXZ/fuLHeHsw1gHcszksw76UFPLvOi9xT023TNPCnNMFcM27L/NO6FlrliuEEGYlAdAy1H4G8CaAOek+e0C56jc7XdtBAEfzMcZQAGOhvLhhBLAq9fNYACVTj/FL3Vc1Xb+LUG73fgXgk9SakqFMZF02i7EkAAqz0+vJqc9257QGXU3uD1wXwrvOGvr/MiatLT72AY9VcOa1kg6866zhxhF9mJKcaK2ShRDCbBITE+nt7c3ERPk3zJzUDoCJAH5M97krlADYIV3bb8j6mbucuIasl5V7FPjmQ7nqmD4AjocSPO+n1nkNwHRkHf4ACYDCQh48UF4Mycrk1/rxYhkHJsYr69OtbP8ij7sX59ZNMRzd2ptXXO15vGJx3jx31EoVCyGEKMjUDoC3AMxK93kKgJQnivkVyvx7hYEEQKGKkCuJPONWjP/078KAvyYxxgH0He+ftn/LxgdcWqMGT3k6MybytoqVCiGEKAjUDoDbodwGdgdQGkog3P/EMSsBXLZyXXklAVCo5vf3f2akE3ijpJY/t/go03rFJ47GcIdnae6uV05uBwshRBGndgDsAuXZuwQAMVBuy/Z/4pgbAFZbua68kgAoVJOQQG6qXIFrq1bhgyjT6wT/43eNZ90cubldQxqfTIhCCCGKDLUDIKC8YHEkdRvxxL6WAKJSjykMJAAKVZ0+nshLF7JfL/PHEXt4p7iWm2UVESGEKLIKQgC0JRIARYFnNJJDOy9hVDHQ/7NeapcjhBBCBWoEwD8BtACgsdaAViQBUBQKKSnkyG6zGe0IbhgxUO1yhBAiSzExMaxXrx5jYmLULsWmqBEA9VCe9YuAMtlzJwCO1hrcwiQAikLDaCTHvzeFMQ7gyr7deH7HJuqTMr4cEhf3QJ4VFEKoSiaCtgw1AmA5KM/0+UOZX88A4CGA5QB64/HkzIWRBEBR6PwxaBIPlivOOHswwQ48616M10rZ86EjSICBdcoxPOSi2mUKIYooCYCWofYzgCUB9IMy1ctDPH4jeCOAgch+0uWCSAKgKJSMRjIkJIGrZm/mX59+y9kj/+Ciyeu55I+93Fi1AkNc7bjT92+1yxRCFEESAC1D7QCYXjEAnaGsynEXShhMAbAHwBcAqqlXWo5JABQ2J+ahgVNe7844e3D9S7W5rtvr3Da4G3W/f8mUxHi1yxNC2DgJgJZRkAJgeloArQBMAxAKJQwakL81ga1BAqCwWb7jFnNmgyb09XqGKytX5MXS9rxQthh1PpPVLk0IYcMkAFpGQQ2AT2oCYBKAs2oX8hQSAEWREBVFrvonluMadWVUMXDbsxW4uldH/vt2K65r+yp3/P6T2iUKK4iNjeVff/3Fnj17MjY2ltHR0axSpQoTEhLULk3YEHkL2DIKSwAsLCQAiiLFaCRX+J7m7HqNuNyrKv1q1+K8OrUZ6wAeWrFc7fKEhS1dupTJycls0KABIyIiSJKdO3eW/6EWohAoCAGwMoDfoawLfAHAVRPbFbWKyyUJgKLIMxrJKc3a8Fope0aGXlO7HGEGvr6+dHd352uvvcZbt26ltT98+JDHjx9n+/bt09r+/lteFhKiMFA7ALYEEA/lGb9kKOv+XstiKwwkAApBMjo6hRuql+XOmuVp1Ge/NJ0o2E6ePElHR0fu3r2bXl5e7N+/f4b93t7eGULfnDlzrF2iECIP1A6AhwAkAegP5cWPwk4CoBCpDu+7zEul7Lm6Uzu1SxH50L17d7Zo0YLx8fGsXr06R40alWH/0KFDuWnTJpKkv78/r169SpLcvXs3hw8fzq1bt3Lt2rUcO3Ysg4KCOHz48LRnBGfOnMmAgAD26tWLt27dYmRkJAMDAzlhwgSuX7+egwYNsu6XFaIIUTsAJgDwU2NgC5EAKEQ68yYt4l1nDbfXrsjLuv1qlyNy6c6dO7S3t+f06dOzPObYsWMcNmwY/fz86O/vn9YeEhLCvn37MiUlhSdPnuS4ceNIkoMGDWJSUhLXr1+fdt7evXuTJK9fv06S/OSTTxgbG8sHDx5Y6qsJUeSpHQBvAZhiwfOXAPADlFVHIqHcav4gF/1LAZgDZdm6WAA7ALyQzfESAIV4wvZNp7m4bk3GOoBL2rfmwq5dubFuVV5ztee2GuV5/cw5tUsUWZg2bRq1Wi3Pnz+f674JCQkcMGAASXLq1KnU6XRMTk7mRx99xBs3bnDIkCG8cOECY2NjOXDgQIaFhTE2Npbk40AYEhJivi8jhMhA7QA4B5ad268alNB3DcpLJgbkPABqAARBWaHkWwCDAZwGEA2gZhZ9JAAKYYLRSM779i/urlSKm6uX5+wWbegzYgLX1qrEMBc7bvt7ltolChM6duxIT0/PPPXdu3cvFy1aRJIcMmQIjUYj7927x2+//ZaHDx/mli1bOH/+fK5atYpjxoxhUFAQv/nmGy5btoyjR4/mjh07eOHCBXN+HVFIJSYm0tvbm4mJiU8/WOSY2gHQA8BlAH9BuVpnbg5Q1h4GgMbI3RXAXqnHd0/X5gHgPoDFWfSRAChELiQnGTitXXfGOoD/vNWKVw7sUrskkUqv19PFxYXdu3dXuxRRxMlE0JahdgAEgFpQbs/GQLkauMPEtt0M4+Q2AK6Acov6SbOg1OpgYp8EQCHywPdbH26vVJqJduDl0o5c07gBVzZ5nuvq1+BWr3L07fEujQaD2mUWKTqdjhqNhhMnTlS7FFHESQC0DLUDYH0oz9cZn7IZzDBWbgPgRQAbTbT/J7We+ib2SQAUIo+MRvLIgTD+OXA05zZuRJ+XGnP2G205581uDCthx7X1qvDenVtPP5Ewi8mTJ1Or1aa94SuEWiQAWobaATAASpj6FkAVAHYWHCu3ATAGwFwT7R2h1NzOxD4JgEJYwIk9Z7inohuDPRx5cPNatcspEjp16kStVsuwsDC1SxFFnARAy1A7AD4EsNJKY+U2AOoBzDDR3ir1PF1M7JMAKISFPLiXwHnPv0wDwAtl7PnvC7W59OOBPLx+HfXJSWqXZ3Pc3d3p4eGhdhlCSAC0ELUD4D0Av1ppLKtdAdTpdAwODs6whYeHq/13LUShZzSSQVtCOfM/39P3xZe537Mk4+zBWAdQV6Ekl44YrXaJNuHcuXPUaDRs3bq12qUIIQHQDMLDwzPlEp1Op2oAXAVgt5XGstozgKY2b29vtf/+hbBJ9yMTuX7uOs7q3JMxDqBfrz5ql1To+fr6UqPRcNiwYWqXkmsbNmzg1KlTOXToUA4cOJBxcXFqlyTySa/XMzg4mHpZVjLPvL29TWYTqBgAvQDcBTAayrx7lpTbAPgPTL8FPAdPeQtYrgAKoY4Vk/5mpJOGC1u1yPqtYaPRukUVQoMGDaJWq+Xs2bPVLiVXQkJCOGXKlLTP3bp14+DBg/N9XqPRSIO8hS4KsYJ4BXAegJ1QrqhdAbA6te3JzdcMY2UXAD0B1EHGl1B6pdb1Trq2R/MALsliDHkGUAiV+fut4/WSdtxX2ZXrn63Kf5+rxVWNnuGOGu686ObAeHtwfQMvRsrLDVmqX78+tVot9+7dq3YpubJ+/Xo6OzunTRg8ffp01qtXL1/nTElJ4bBhwxgREZGrfqNHj+aNGzfyNbYQlqT2M4BPm/7FHNPADAUwFsDM1HOtSv08FkDJ1GP8UvdVTddPC2A/lJU/vsPjlUAeAKidxVgSAIUoAA5vP8pZb/Xg7FZvcU7zVpz78muc+XY/zhk2kYt/WshtVdx4tZQ9d/r4qF1qgRMdHU2tVkutVsv79++rXU6u6PV6Hjt2LO3z119/zS5duuTrnMOGDaNOp8t1v6ioKHbo0IEJCQn5Gl8IS1E7AFbLxZZX16AESFPbo8A3H8pbv1Wf6Jt+LeAYKBNSy1rAQhRycbEpnNayE+Pswa3PVOBOLw8equjCoCqleHxrgNrlqWr79u3UaDSsWLGi2qXkS3R0NGvWrJmv5eS2b9/Ojz/+OM/9/f39+cUXX+To2Dt37rB58+YsX748O3XqlOcxhcgptQOgrZEAKEQhsuiXZfyzRUdO7dCPf/T8gn4NGzG8uIZbfeapXZpqfvrpJ2o0GrZr107tUvLlo48+yvEtbIPBwBEjRnDEiBFs27Zt2hW/pk2b8vTp0/mq44UXXsjVXIo1atSQ1VeEVagdAIvl8LjqlizCjCQAClGIGQzkzLbdGO0I/vPteLXLUcU777xDrVbLESNGqF1Knk2ePJlHjx4lSV66dOmpx48fP55vvPEG9+7dy9KlS9Pf35/Hjh1j8+bN813LjBkzOHp0zqYnunv3LjUaDYOCgvI9ri2Rt4AtQ+0AuCoHx1QBcNXShZiJBEAhbMDsDz9nrAN4wc2BZ90dGezhyM11KvDfiT9Sn5KsdnkWVa1aNWq1Ws6bVzivgvr5+XHTpk28c+cOb9++zd9///2pfWrWrMlJkyZlaPvpp5/43Xff5bueU6dOsW7dujk6dvXq1SxZsqQEnSfIPICWoXYANAL4M5v9ngAuAUiyTjn5JgFQCBuxa2UgF4/+lQu+/Jk+Q3+kb5PmDHfW8qKbPX3ffosh58+rXaLZPboCpdVq066gFSb79++nvb192kssWq2Wn3/+ebZ9QkNDTV51a9euHTds2JDvmoxGI0uXLs2bN28+9djhw4ezY8eO+R7T1kgAtAy1A+CfUF7GGGViXzkA56C8nNHbmkXlgwRAIWxY5J0Y+n44nEEVSjHOHvz3uRrc7jebRhuZW3DLli3UaDR0dHRkUlLBWl5v165dHD9+PNu0acODBw+mtTdv3pwfffRRrs8XGxvL999/n6+88godHR35/vvv8/333097Xq9s2bK8cuWKWWpp0qQJAwIyvlxkNBo5Y8YMDh48mBMnTuQff/zBF198kb/++qvFvnNhJQHQMtQOgBooc//pAfRJ114GwCko4TCnEzcXBBIAhSgCjEZy49/rubj+c3zoCB7zdOLCAe/x/t3bapeWLz///DM1Gg2fe+45tUvJICoqihMmTCBJdujQIcPziR988AEbNmyY53OPGTOGjRo1ytBmMBio1Wp57949s9TSvn17zpo1K0Pbe++9x86dO6d9XrRoEbVaLY8cOZLncWyVBEDLUDsAAsqLIPsAJAJoCWXqlaNQbg9/olZReSQBUIgi5tzRcP7V8X2eKuPM+07gvw2q0q9HN26bM4tx0YVrHr2+fftSq9VywIABapeSwdKlSxkSEsLIyEg6OTlx06ZNaftu3brFrl275vncb731VqaraREREdRqtUxJSTFLLb179+Yvv/yS9nnWrFl0cnLi3bt309pWr15NNze3tKvJlvzOhY0EQMsoCAEQUK74nQMQhcfh7ws1C8ojCYBCFFEpyUau+MGXvs1ac2vVcoxw1ijL0vV6l0kJ8WqXlyOPVgCZMWOG2qWY9Pvvv7N69eoZ2kJDQzlt2rQ8n7NixYr8888/M7TdvXuXWq0229vguamlT58+/O2330gqt36rVauWKcANGTKE3bp1y9c4tkoCoGUUlAAIKJMw34Ry2/cblWvJKwmAQgiSZHycgXM/+5HnSzvytEcx/vPD99Rt2sRtC5Zwwx9/89LxYLVLzCApKSntBYq8rHxhDS+//DK/+eabDG1TpkxhaGhons4XERFBjUbD3bt3Z2g3Go20s7PjnTt3zFLLm2++yQULFpAkz507R41Gkylk16lTJ1MQze04tioxMZHe3t5pS/wJ87B2ADS1zm/6bT+AuybazbEWsDVIABRCZHA/IpZz2nblA0cNE+zAe04ahrlomawFt1dzp+/7nzDsivrrEp88eZIajYYODg4Fdvmy4sWLc/Xq1Wmfk5KS8jVfYUBAALVarcl/sz09PXnu3Dmz1NKkSRP6+/uTJI8fP06NRsM9e/ak7b9+/To1Gg2Dg4N5/vx5rly5Mk/jCJEb1g6AOV3715xrAVuTBEAhhEkJ8UYmp5tC8FDAfvq+2ZEnyjoxSQvuqlqGi3p045k921Spb+nSpdRoNJleiChI6tSpkyEcjR07ltevX8/z+SZNmsSaNWua3NemTRuuWbPGLLW4u7unXbFLSkpi5cqVuXHjRpJkfHw8u3btSnt7e5LK/IMRERF5GkeI3LB2AMzN2r/mWgvYmiQACiFybe+a7fy7wzsMrOzOBDtwY73KPBZo3SA4duxYajSafK19a2kHDhzgO++8wwkTJvCbb77J91yFPXv2ZL9+/UzumzBhAkeNGpXvWs6ePctq1aplaNPpdHz33Xc5YcIEjhs3jrdu3WKPHj04cuTITM/2mfs7C/FIQXoG0BZIABRC5JnRSAauPMJlz9ZhvD24uElDrvxpKnWbN/PenesWnW+we/fuhXoFkLzw8vLiwoULTe47f/48GzdunO8xZs2axeHDh+f7PEKYmwRA85IAKIQwiy0+6+hfsxJDS9ozSQsS4E0XLVc1qs1lI7/ivbCnryyRG3Xr1qVWq+WFCxfMet6CxsfHh7/99lva9Cqm5vp75M033+ShQ4fyNV7jxo153gZXjRGFn7UD4FkAQ1Tsb2kSAIUQZpcQb+TJoFD6jZpKvxdf4jk3RyZrwSPlS3Dpyy9w6edfMnj3PhoNhjydPzk5mQ4ODvTw8DBz5QWPq6srBw4cyEWLFnHIkCHZHnv06FH26tUrz2Nt3769SK3YIQoXNV4CGadif0uTACiEsDijkdyzdi/n9B/Mxc/X5wkPJ6ZowEgnDXdVKUO/N97gtvmraNDnLBA+egO4S5cuFq5cfd7e3hw7diw//fRTxsbG5uj49C9h5FRMTAzffPNNRkZG5qVMkU5MTAzr1avHmJgYtUuxKWoEwB1QQlxeNgMkAAohRCZ3bt7nv1Pnc867fbmhdiXGOoAXSztwYbNXuHnmgmzD4OLFi6nRaDKsViEURqORI0eO5M2bubvlPmrUKJ4+fdpCVRUtMhG0ZRSWaWDSb7kNgI4AfoEyyXQ8AB2Atjno553F+PHZ9JEAKIQoEMLDIjh/6Ff8t241PigGhpS045Kmjblj0epMx37zzTfUarXct2+fCpXaJlPLyIm8kQBoGdYOgG+YYcvtlDDLACQB+BnAICjrDicDaPaUft5Qrjh+DKBfuq13Nn0kAAohCpz7dx9wwZfeXFnPi3H2YFAlVy789AtGRShr0bZr147Ozs7ZLn0mhFokAFqGrb8F3BTKVbsR6dqKAbgEJQhm51EALJOL8SQACiEKtAsnL3FOh7d5uZQ9CfChI+imAV8oZk+fPh/wxhWZZFgULBIALcPWA+BkKFf7XJ5oHw0l3FXKpu+jAOgBoGQOx5MAKIQoFFKS9AzWneWCyX9TAw27PlOXx8oVZ5w9uKZuNS4dM5FJCXJFUKhPAqBl2HoA3Aog2ER7ayjhrlM2fR89A/gw9T9jACwCUC6bPhIAhRCFiq+vL7VaLXU6HUkycMG/XPhyE94uruUNFy39Xm3K1b/O5J2w2ypXKooqeQvYMmw9AJ4GEGii/Vkooe7jbPoOA/AngD4AugOYAuVq4nlkvqL4iARIFUPrAAAgAElEQVRAIUSh0qtXL5YrVy5D2549ezjyy5H8uENXdizlwuvOGhoAnivjyDV1q3HeW524asJvvHHpqkpVCyHyy9YD4GUAG02014ASAIfl8nx9U/t9ncV+CYBCiEIjPj6eLi4uGda8TUhIYM2aNZmQkECS/Omnn/jTTz/x1N5jXPSlN31btuammhV5zdWOBHjV1Z6ba1fkgrZt6D9jTo7nHhRCqMvWA2B+rgBm5RaUW8umuAKgTqdjcHBwhi08PFztv2shhODLL7/MDz/8kCQ5Y8YMFi9enCEhIWn7/f392bJly7TPe/fuZZMmTUye69yxy1w8ZjJnt+vEtbWr8H4x8JqrHRc2e4UbZ8xjfEycRb+LECJnwsPDM+USnU5n0wEwu2cAjcj+GcCsHARwJIt9rlD+MDNt3t7eav/9CyEEq1atyj59+vDEiRP08PDgxIkTM+yfPXs2u3fvnvb5zJkzdHFxydG570dEc/7nY/lvnWq8X0zDOHtwXyVXLmjWlPM//oy7VqxjYkKiWb+PEOLpvL29TWYT2HAAzOot4DF4+lvAWQkH4J/FPrkCKIQo0Hbu3MmaNWvSzc2NY8aMybR/0qRJ7Nu3b9rnK1euUKvV5nqc5KQUblu8kT69PuLyhnV5uHwJxtmD8fbgkfLF+U/D2vTp+i7XTpnDxPiEfH0nIUT2iuIVwEfzAH6Zrs0RwEUAQenaqgCo80RfDxPnG4Lsnx2UZwCFEIXajBkz2KdPn7TPJ0+epLu7u1nOnRCXxF0r/Dnv4+H0a96MATXK8Z6ThvedwI21KnJuj75cP30e796KMMt4Qois2fozgACwAspKIL9AeeYvKPVz83TH7IIS7NKLAzAPyiTSgwEshXLV8AgApyzGkgAohCjUAgMD2apVq7TP27dv54svvmix8ZISkrhhuh/ntWnLXVXK8K6zhnoNeN7NgeufqcR5bVtz8cgxDFq3mZFyJ6VISkxMpLe3NxMT5fEBcyoKATAnawHvBKB/om02lJdIHgBIBHABwEQAJbIZSwKgEKJQS0pKYtWqVfnw4UOSyrNDP/74o9XGNxqMPLXnOJd89SN9273FtXWq80yZYky0AwnwvhN4vJwzlzVuyEWfj+SVU2esVptQh0wEbRlFIQBakwRAIUSht2HDBn755Zf09fXl4MGDC8QawclJBp45dJEb/15On0EjuPiF53jK3YkGgMHuxbjsxfr0G/wFj2zbw5TkZLXLFWYkAdAyJACalwRAIYSwovNHLtJv8GguavwCT3g4M0UDxtmDJ8sW41avcgzwKsetNcpya42yXNaoHn06deHikd9x77/+jIuJVbt8kQMSAC1DAqB5SQAUQggVRUfGcdtif84bMoaz3+7FOV1606d7X/p068UFr7zMzTUrMNi9GBPswBQNeLG0AzfVqkDfHn14bNtetcsXJkgAtAwJgOYlAVAIIQqBpMQUHtoSxKVjf6FP2w7cU6kUk7XgRTcH7qhahmuerc4lTRtxXqe3ueizkQyYu5ih5y/RaJCVTqxNAqBlSAA0LwmAQghRSIVcuM4FX3pzTs/36dO6HRc1bsQNtSrxWNnivOekIQFGO4InPZy4xas8Vzxfl/PfaEGfd3tz/oD/cuGnw7n0yzFc/+t0XjlymAZ9itpfySZIALQMCYDmJQFQCCFskNFIhlwIo//cVVzw+VjO7dyD85s14z/1n+HW6uW4t2Ip6jxdeKysM0NK2tEAZdLrs+6O3FqzHJc2bUSfLt05t2c/+nTvRd+u73BevwFcNWEqj207wKQE9V+0Kaj0ej2Dg4Op1+vVLsWmSAA0r7QAuHz5cr7++ut0dXWlVqulIZe3DQ4fPsxWrVrRzc2NZcuW5TvvvMPQ0FAL/QyEEEKY0/VrD7h29ibO+q83/+7wLhe92IhbangysFpZBtQox801Pbm7cmledbWjXgPqNeBdZw0vlnbgIc8SDKzuwTV1q3Hpiw3p83ZXrp0ym1F376v9tYQNkQBoXmkBcOvWrVy+fDnnzZuX6wBoNBpZrlw5jhgxgikpKYyNjWWvXr3YrFkzC/4UhBBCqCHmQQwPbdnLTX8v5vLvfuH8/46gT49+9G37Jhc2fYkBNcozwlnDJC14yqMYd1UpzQ21K3FFo2fp2+1drpn8F2+H3FT7a4hCRgKgeWW6Bbxr1y6TAVCn07Fly5Z0d3dn9erV+d1336UdExUVRa1Wy1OnTqUdv3HjRhYvXtw6vwohhBAFikFvoG7jbi764lv69BvIuR270O+Vl7m1elneKqGlAeA1VzvurOLG5c8/y3nt2tO313tcOHQUV/04ldsXrWLw/qOMiZJHlIRCAqB55SgAnj9/ni4uLvznn39oNBp5/fp1NmrUiJMmTUo75vPPP+dnn33G+Ph4RkVFsUePHnz//fet+uMQQghROJw5cIIrJ0ylb+8PuKDZq1xTtxq3VXPnkXLFeaWUPR8UU1ZSIcAEOzDCWcOrrvbUVXDhkpee5/yBn3LX8rU8e/Ao74ReZ3KSLLtm6yQAmleOAuCwYcPYr1+/DH8RS5YsYa1atdI+7969m88++yzt7e1pZ2fHxo0bMyJCFkgXQgiRNzEP4hh84DR3rQzghplLuHz8n5z7/n+5+MXneLC8C+PtH4dEArzg5sBVDWrRt/f7DJi3nNH3H6j9FYQZSQA0rxwFwI4dO9LZ2Zlubm5pW6lSpejq6kqSvHjxIh0dHTlr1iwmJyczPj6e48aNY82aNRkfH2/1H4kQQgjbZzSSD6PiGXI2lIcDD3Lhl970a9aMeyuVYrSjMnH22TKO3FSrIpe92IB+bVpxXu9+9PtwIP0GfEK//3zKVRN+Y0TYbbPWZYm3gA16AxPiLX+V8/T+41zQ/FWu/9PH4mPllgRA88pRABwwYAAHDhyY5V/K6tWrWbp06QxtDx8+pEaj4aFDh8z/K3iK8PBwent7Mzw83OpjC2FO8lsWtsLav2V9ioGHAg5w4cgfOLdDFy54uSlXPVuTgVU9uKuyG3dXKs19FV0ZWlJ5q/l4OWeufO4ZLnq1Cee3aUvf7j25aPgYBi5YxfDrt5mckMibV67zVNARHgncy0unzvHh/SjqU1J4Vnec6//0od+nI+jb7yPO6dGX/63qRd//fMrgfYfz/V22L1nHQ+VLpL1Us7ZOVfq81ZlhV26Y4U/qscUjv2OEs4Z7KpdmrAO4xas8t8xdbtYx8kMCoHmlBUCDwcDExEQGBARQq9UyLi6OiYmJNBqNPHz4MEuVKsWVK1cyOTmZBoOBly9f5pYtW0iSoaGhLF68OOfOnUu9Xs+EhAR+//33dHV15YMH1r8EHxwcTAAMDg62+thCmJP8loWtKKi/ZaORPBx4kL6DhnNes+Zc8kJD/lu3BrdWL8tTHk586JjxNjMBGpC57XYJLQ+XL86dVcpwW1V3bqpYikfLOVOfunzfqvq16Nfidfp0fZfzB33ONb/O5JkDx2nQZz3jRkJcAn3bvck4e3DBq025+5/NXPTFGM5r2577K7jyrrOGPp26MOpuVJ6/f3RkNPes2sIljZ9ntCM474P/kiTPHjrNxS+9wDh7cEfVMpw/8DNG3onM8zjmIAHQvNICoJ+fHzUaDbVaLbVabdp/3717N0ny0KFDbN++PcuWLUs3Nze+8MILnDNnTtpfTGBgIF999VW6ubmxTJkyfOONN7h3rzrrVBbUf2iEyC35LQtbUVh/ywa9gReOnefx3UcYeuE642MSqU8xMOJmJM8ePstDAfsZGZ4xgKVfCSTkfCgXfenN+a+9xn8aPEN/L0/qPF0Y5qIlUyffvljagQc9XRhQoxzX1K3GgBrleKBCSYaWtOO5Mo5cNzXz7ViD3sAlX//AEx5OvOGi5bZqHtxUqwLX1K3O9bUrc1dlN57wcOKlUvY8V8aRJ8o68VD5EjxUvgSPlC/OY+WcGZo6AXiCHbi3UikGrd2WaZzT+4/Tt30HnndzZFQxcE3davTp0IlL/jeJp4JO0mi02B99JhIAzcsLAC9fvpyrv4TcXsrPzfE5OfZpxxTWf2ieRu3bgZYa3xznzc85LPV7lt9y1uS3bJlzyG/Z+kx975wuBXfvdiR3LNvEpWN/4bxBwzi3e2/6tH2Tc7v35vyBn3HZ/yY99erezbCb7N7sDU7t3IM+nbtzXtv29OnYib79BnDh8DFc8f1vXDr6Ry78Ygzn/3cE/T79kguGfsWFn4/mqp9n8MSew0xJzrwE4JPfy6A3cN0UH85/4w1uqlWRl0o5kADvFNdwR5UyXPBSY87tN4gb/17K+xFRWZ4np7L7c4UEQLNoCoA6nS5XfzG5/T/k3Byfk2Ofdoyt/kOj9vey1PjmOG9+zmGp37P8lrOm9veS33LujpffctZMfS9rrgWs5m854sZtbvzTh/N6v8dlLzZkUCVXRhVTXr457+bIrdXL8pd6dQiA45u/xnmtW3N+i9c4r3Ur+nZ4iz5d36Vvx05c+HJjrqlbjRtrVeS8li25+Ctvrlv+b5Z/rpAAaBZNAXDt2rW8ceNGjrft27cTALdv327243Ny7NOOyW19hWVT+3tZanxznDc/57DU71l+y9b/Lak9vvyW5bd848YNnj17lgB49uxZVcZX87yhIaHcvGwtpw0excntO3H0M7WUAFipLGfXqsaZdbw4q3Z1+taoyIVVPTivuienNXiWvzZvwV9btuZcr8rcVcqe25WgxwUltFxdviR/6/Eez5w5IwHQjN5F6h+ybLLJJptssskmWyHYXoTIt6YAuG3bNkZHR+d40+l0BJRbx+Y+PifHPu2Y3NZXWDa1v5elxjfHefNzDkv9nuW3bP3fktrjy29Zfsu2Mr65zpvX85jqd+PGjUcBUK4AmoE8A1iIqP295Lmp3B0vv+Wsqf295Lecu+Plt5w1tb9XQf4t5+c82T1bCQmAZiFvARci8uakZc4hb05an/yWLXMO+S1bn/yWLXMeeQvY8jKtBGILbPUfGlH0yG9Z2Iqi9Fu2xFJwQgKguUkAFKIAk9+ysBVF6bf8KKjY2v+2qk0CoHnZZAC0xCXxmIU+TNQFme18QuSE2reXhDCXovRblgBoGRIAzcsmA6AlXKxRikc7v6R2GUIIIQo4CYCWIQHQvCQA5oAxKYmJdmBoheJqlyKEEKKAkwBoGRIAzUsCYA7c2R/IOHtQrwGTwkLVLkcIIUQBJgHQMiQAmpcEwBw49ssIHvFy5smKdrwwc4La5QghhCjAJABahgRA85IAmAMHer7KNS2e4eq2XjzW7RW1yxFCCFGAJSYm0tvbm4mJiWqXYlNsPQCWAPADAH8AkQCMAD7IRf9SAOYAiAAQC2AHgBeyOV4CYA6cqu/Br1/qyf91G8CQSi5qlyOEEEIUObYeAKtBCX3XAGwHYEDOA6AGQBCAhwC+BTAYwGkA0QBqZtFHAuDTGI184Kzhy9X+5svNt9GgAfV3bqtdlRBCCFGk2HoAdABQLvW/N0burgD2Sj2+e7o2DwD3ASzOoo8EwH//Jbdty3L3/XPHmaIBS7jcosYuhac9tbwy91crFiiEEEIIWw+A6eU2AK4AcMtE+ywAMVDC5ZOKfADc8+5LPNqjeZb7T8z6gWfKO/Dll0kvL3L5a9V4vMfrVqxQCCGEEBIAs3YRwEYT7f+Bciu5vol9RT4AbhzWkScaV85y/74BbbmmYVV++in50UfkuHf7MaSqqxUrFEIIIYQEwKzFAJhror0jlADYzsS+Ih8At/01iiGezlnuP9ykEn9s0oGzZ5O+vmTLthtp0IDGu3etWKUQQghRtEkAzJoewAwT7a1Sz9PFxL4iHwCP7V7BJDuQer3J/WFu9uxYaxIPHSIvXiQdnJJ4ppyGN+ZPs3KlQgghCoOYmBjWq1ePMTExapdiUyQAZi3PVwB1Oh2Dg4MzbEVhwW6SDL9/gykaMO7i2Uz7Ym6HkgDdS55hQgJpNJLly5MrmlfkyT6tVKhWCCFEQScTQedfeHh4plyi0+kkAGYhz88Amtq8vb3V/vu3CqPRyKtuGl5eNSfTvtPLpvF6KS0bNHjc1qMHOfHdd3ixtrvZargXep63zh4y2/mEEEKoRwJg/nl7e5vMJpAAaNI/MP0W8Bw85S3gonwFkCQP1C3JYz8MztS+94vu3FqnHN9//3HbtGnke+2mMqqEndnG39W1Efe/kvWLKEIIIQoPCYD5J1cAsw6AngDqALBL19YLypW+d9K1PZoHcEkWYxT5ZwBJMqCtF3XvtczUHtSyJv9s/BqnTHncdvw46VnxKAlQfzfCLOOf8nLh1XIOZjmXEEIIdUkAtIyi8AzgUABjAcyEEgBXpX4eC6Bk6jF+qfuqpuunBbAfysof3+HxSiAPANTOYiwJgCQ3fdyKR5rVyNR+saIT+z/7FXfufNym15MlS6XwTgnwRsCqfI+dFB/DBHtQrwHjH9zL9/mEEEKoSwKgZRSFAHgNypU8U9ujwDcfylu/VZ/om34t4Bgoy8nJWsBPEfjrYF6qmnGN34ToSKZowaquexgVlfH4jh1JXVVnnpg8MtvzxibF8k7MnWyPObNlMaOKgZFOGp7zX5Sn+oUQQhQc8hawZRSFAGhNEgBJHto0lw+LaZTXfFOdXvkXb5XUsnp1Q6bjf/qJXF6vCg8MaJ/lOfUGPf/44Bku6Jr5ymJ6u0f35baKZbjL05V7vP+T9y8hhBBC2DAJgOYlAZBk2M3zJMDEWzfS2vZ8+hYD6nnynXcyHx8QQP7Q4HUealEry3MunNyfeg14zU1DvcH0HIMkuf2N2pxY/VVOr96QAW+9mK/vIYQQQtgqCYDmJQGQpMFo4G0XMMR/eVrboZcq8LdmHTlhQubjQ0PJHl6f8nz1kibPt2/HAkY6gzfGf0UCPBu8K8uxz5UvxkGNRvPrRv14oHaZfH8XIYQQwhZJADQvCYCpjnk589ivqc/0GY28V0LLrs9P58aNmY81GMgm1eYx+onbxiR569ZFnvG04+m+bUmSIZ7ODJj6mckxYyJvU68Bh7x3hMO7zmZEca1Zv5MQQghhKyQAmleRD4Dr1pE7d5LbX6vMAx93JEnePraHiXago8M93rxpul/TJldJgLHXr2RoD2xVjWcalKcxKYkkebhtfW7s1cjkOU6smMYwFy3nzCF/mxhGArx7JTjLWsP3BjAiKDD3X1IIIYQo5CQAmleRD4DffEMOGkT693+FujZ1SZIHJw7l0WrF6emZdb++/YwMK6nhhTW+aW3JyYmMdAYvbV6S1nbs20HcX9fF1Cm4Y+jbXFvZkydOkDt2kJdL2fPYgl9MD2g08mLlEjzjVSr3X1IIIYQo5KwZAEukbo8UhzLJck1LD2xFRT4ArlpFPvccGfjDhzxT240kGfTWc1z62nN8++2s+40fT+6tWpK68f9Nazvh78eHxTQ0JCeltd3ZtYkPioExCZn/jHe9VJnferVjSgoZGUmuqVSegYO7mhzvwtp5jCoGxjqAoTvW5vHbCiGEsLTExER6e3szMTFR7VJsirUCYBsAcQCSoEzA7ATgCJTJlxNT99uCIh8Ar18ntVpy9+KpjCipLO92sXJxjmn/GbNbDnnlStKvTi3ufe/1tLbAzzpxR43yfP55csAAcvp08vqVZMbbg4cCF2Q6xzU3e378ys9pn3+u05yBr9Q2Od6eV2vwjxoNObeGF/e1b5i3LyuEEMLiZCJoy7BWAFwM4F0APQEsA+AD4L9Qll97C8BKSw5uRUU+ABqNpKcnuWbFQRJgfMhlGjTgK8/v4fr1Wfc7fZr8ptab1L1SJa0t6MWy/F/1Lpw6lRw7lnzlFfL118lzz5ThpjE9M/S/G3KOBDhq6LW0tq9afMFTFYtnGiv8yikm2IEfdNzMbk3nMtYBjLt7K9/fXQghhPlJALQMawXAgU98HvPE5+EWHNsRwC8AbgKIB6AD0DaHfdsC2AHgLoAoAAcB9M/m+CIfAEmyc2dy8q9JjC4GHhv1PkNLawmNMcsXQEgyMZHsVmUUz1dyJvn4+b8WFZdQnzrtX0gIaW9P7n/3NW5pl3FC6ENzf+BFNweuWPG47btPNzDBDhluIZNk4H9aMbCiOzduJH//3chDFZwZ9HU/s3x3IYQQ5iUB0DKsFQD7APgAgHPq5yap/1kNgAOAERYcexmUW88/AxgEYB+AZADNntKvC5Tl4vYCGAJlLeCdUG5bf5FFHwmAJCdMIPv0Ic9UcuTlaq4MaFwh2xdAHmld/1/GOoBGg4EnAxbyoSPYsX3G8FanDrl66Hc8VckhQ3vgBy25uEp1Xrv2uG3ZsgTG24OhBwLS2hISYnjDVcv+tb2p15O3bpEDanzAS55ONBoMaccE/vQxt3zXj4G/DuaO2f/j3VsZ304WQghhHRIALcNaAbAFlKto9Z5ovwNgG4B+Fhq3KZTAlj5gFgNwCUoQzE4AgBsA7NO12aX2PZ5FHwmAJLdsIb28yD1NypMAZ3bpxE6dnt6vS6dIGgDeOX+UgcPe5o7q5TNNHD1sGPlN/2CmaMGbty+ltQfV8+BXtd/JMI3ghQvk4bLO3P/r4zWGt//+GUNd7fn9uJS0tvZtIhjpBAavnMkjS37j+QqOvFbGkQdrePBUJVdGlNByy9ump54RQghhWRIALUPtaWBeBvCSBc8/GcrVPpcn2kdDubpXKZu+BwCcyqJ9fxZ9JABSeQMXIDd3e4EEOLj7TI4b9/R+o0aRIaXseHzZVO5rXI7janXmzp0Zj9m4kazpZeS9kvbctehHkuSmSQMYXQx8r33GFUL0enJ+dS9ufqcFSfLSRR2PVS3G/1XuyuvXHx83fz7597ONGF5Sy+hi4IyW3ehVNZ69eyu3swfUG83z7hmvOAohhLAOCYCWoXYAtLStAIJNtLeGEgA7ZdP3p9RjxkOZqsYLwHdQAmXXLPpIAExVsya58MOejHUA6zW4l+0LII/4+pI7q5ThztF9GOkMvuq+mHFxGY+JiSEdHMjDL1Tlhk9a0n/FJD50BL9rM5njx2c+5/cvdOK+uuW5Y3g3RjqD+2pXZ483wzMcEx1NenkEcUPHRhzz+VFWrswMt5KX+oYxWQteO74z138OQggh8kev1zM4OJh6fdbrwIvcs/UAeBpAoIn2Z6HcGv44m77OAJZDCYHG1C0GQOds+kgATNW3L/n1F0s5851q1GiY7QsgjwQFkbNqNqCufmnGOIKvvGR6zqeWLckVHbsxqGYx3iil4anPB7BMGXL37szH/q/bRBLgpfIOXDD8N7q5kRs2ZD6uZ0/y2WfJcuXI8+cz7rt9m9xVvjQDRvTOwTcXQgghCj5rB0CDGbZxuRjvMoCNJtprQAl0w7Lpawfl6t9yAL0A9IXyEshDKM8WmiIBMNXUqeTbb5N79zJHL4CQyq3jL6p2pwHgrhrlOGKE6eMmTSK/aulDArzaqTm//srI1q0zLSNMkpw2PZoDXvmEbdpEsUIFcvly08f5+5MeHuTJk6bHHP/sW9xVv1zOvogQQghRwFk7ABoBXEsNUrnddqX2z00AzM8VwFkAjj3RZg/gApTnAE1xBUCdTsfg4OAMW3h4+NP/NmzIvn1k+fLkH38wRy+APNKz1ngS4MR6nblqleljjhwhy5WM54PRXzHkfAKdncmjR7M+VqslP/+cfPAg+7FTUrLe92WPVYxxABPich7ujaaSphBCCGFl4eHhmXKJTqezegDMTYDLb//sngE0IutnAB2gPOs3wcS+PwCkIOPbwY+4QvnDzLR5Z7cMhg2KiyPt7Mg33mCOXgB55N3m20mAL7st4u3bpo8xGJSrdfv2kf37K1t2IiNzPn5WFvgZGOZix8OLslhbOB2j0Uj/vk25v6Eb9SnJ+R9cCCGEyAdvb2+T2QQ2HACzegt4DLJ/C9gzdaxJJvb9ldq3mIl9cgUwneefV94GXrcu530+GZTCqbV68hmvpGyP69uX7NKFdHZWJoi2tNBQ0rfqMwzs3jjb44xGIzcPeJ0RLlreLG3HHWPfs3xxQgghRDYKwhVAdzyeDNoa/R/NA/hlujZHABcBBKVrqwJlWbpHtADuAziHjFf6XABch+mrioA8A5jBxx8rATAsLOd9pk5V+nz4YfbHzZ+vHPf11/mpMHf+U3cUz5d3TPuckhjP/RP+y+AN89Ku9G0e9hbvO2sYsmsdj8zyZmRxDcOvBluvSCGEsDHyFrBl2PpbwACwAspKIL9AeeYvKPVz83TH7IISFNN7dJXwKJSVP0YCOJva1ieLsSQApjNnjvIcYG4ehfP3V4LdnDnZH3fnDtmmDRkVlb8ac2NAn1CmaMDrp4P44E4oj9Yvw9AydnzgpOHtkhrubuzBh8U0vLx5CX//nezaldz/UkXubellvSKFEMLGyDyAllEUAmBO1gLeCUBvom8fKC98RAKIhTIBdLdsxpIAmE50NLljR+76XLumBMCzZy1SUr74+JBBFV257b1mvFCxGA8978HQS2FMSUjg+X/+pq5/a15at4BjxyrPKLZtS7Z4TseHjuCJpVPVLl8IIQolCYCWUVADoDuA7gDehDIdS2EhATCfjEblmcGC+ALtxYvk2OrtSYB73mpAv3kJ1GjI555TwmFcnLJUXcWKSoBNSSE//ZQcXaczL5d1ZOJDK16uFEIIGyEB0DLUDoCDARwEUCZdW2Mo6wY/mvfvIIAS1i8tTyQA2jCjkXy28gWuHj6SK5YbWaKEsjTdnDlk/frKCyk1apBXrmTsM+nHeO4vX4Lb2zVUr3ghhCikJABahtoBcBeUW7Lp7YByO9YHwAYoz+aNtG5ZeSYB0Mb16kW2bk0WL648r/iI0aisZBIRYbrf8I928r4TePCP0dYpVAghbIQEQMtQOwDeBDAn3WcPKFf9ZqdrOwjlRYzCQAKgjfvrL9Lenly7Nnf94uLIgQ2/4H0nDW+d2p/W/iDmHiNj75q5SiGEsB0SAC1D7QCYCODHdJ+7QgmAHdK1/QbgnkFiXjIAACAASURBVDWLygcJgDYuIYE8cSJvfQ8cIP+uUYcnarhy36TB3PVKRUY6gUeqFGP0g6I3T6QQQuREYmIivb29mZhoen14kTdqB8BbUJZce2QKlFU20hfzK5Q3cAsDCYAiW6O/usu9lYrzpKcTf6rZkj3qLqXOw5UbXvfK1dJxCfEPLVilEEIIW6d2ANwO5TawO4DSUALh/ieOWQngspXryisJgCJbSUnkq82M7NCBDAhQnh2c8r+jvOus5abRT1nTLtXhhT/zdkktH0TcsHC1QgghbJXaAbALlJc8EgDEQLn92/+JY24AWG3luvJKAqDINYOB/KLFb4xxAE9vXfLU43c+50kDwIBPO1mhOiGEELZI7QAIAJ8AOJK6jXhiX0sAUanHFAYSAEWe3L1LTqzdlrddtNz9WjXuGNiGB2f8jylJCRmOu3H+EJO04JfV3mFYSS0T4+RWsBBCiNwrCAHQ0nKyEkh2ekO5LR0LJYwGQQmmpkgAFHm2a2cKe1b9lt9Wa8MlVasxzEXLtV1bZDhmXd9W3FKhLJcsTuG50o7cOvojlaoVQghRmKkRAP8E0AKAxkrjLYOy9u/PAAYB2AcgGUCzHPT9Hspt6eVQ1hEeAmAmgPeyOF4CoMgXg4GMjCTPnSN/GLCIcfbguaAtJMnk5EReK23Hce3GkCTHNB3ACx6O1Kckq1myEEKIQkiNAKiHEqoioEz23AnKVTpLaArlGcP0t5aLAbgEJQhm5xUodQ7LxXgSAIXZJCeT82o15M5abjQaDNw2YxxvF9dSF6TcFt4Z+JBhLlpun/y1ypUKIYTlxMTEsF69eoyJiVG7FJuiRgAsB+WZPn8o8wAaADyEcpWtN4CSZhxrMpSrfS5PtI9OHbdSNn2XAwhL9zkny9FJABRmtW1NCCOctVzrPZRb6pfj9HpvZNj/00udeaRSCRoNBnUKFEIIC5OJoC1D7WcASwLoB2Wql4d4/EbwRgADAZTN5/m3Agg20d4aSgDslE3fCABrAHwBZW1iI5RpaoZm00cCoDC7n1t+zrCSGibagYt+02XYtzPgJu8X03D3rF8z9YuMCOWuOWNzNb+gEEIUNBIALUPtAJheMQCdAczH48CVAmAPlBBWLQ/nPA0g0ET7s6nn/ziLfqVT998FEA3lFnIPAJue0k8CoDC7O7cMDPIow22e5ZmUlHn/ny+25oGqrpmuAq5u1ZAE6N+sOmOiZKURIUThJAHQMgpSAExPC6AVgGkAQqGELgNyvybwZShXE59UI/WcWT3fVzndmD3StWugXFEMzaKfBEBhEesWhHPlrOsm9+0NvM77xTTcMfOXtLYz+/wZbw+ObPk795VzZXD5YryiC7BWuUIIYTYSAC2joAbAJzUBMAnA2Vz2y+sVQPfU/YnI/Lbyd1CCYWUT/VwBUKfTMTg4OMMWHi5XYITl/PFSW+qqlEy7CuhfvwIX1qpHvZ7ctT2ef9R6iQ+Kged2rFO5UiGEyB0JgPkXHh6eKZfodLpCEQDzKrtnAI3I+hlADZQ5A2+a2PdfKAGwoYl9rlD+MDNt3t7eav/9Cxt2YEcYI5003DZtEncvmMEYB3D9otNp++/cIf98tgmPVyyeaXJpIYQoyOQt4Pzz9vY2mU2gcgCsDOB3KOsCXwBw1cR2JY/nzuot4DF4+lvA+1P72j/RPj61r6eJPnIFUKjmzyZv8mBlFx6qXILTGrXJtH//nigGl3Hkhr7tVKhOCCGEWgriFcCWUK60GaGErRsArmWx5cWjeQC/TNfmCOAilBU9HqkCoM4Tfb+AEvQGpmtzghJGT2UxnjwDKFRzeO8t3nPS8FZxLY8diDB5zLgP/RhnD57dtsrK1QlbFBsby7/++os9e/ZkbGwso6OjWaVKFSYkyFVmIQo6tZ8BPARllY7+UF78sIQVqWP8AuWZv6DUz83THbMLSlBMzwnKM4SJUK4kfpZabzKA9lmMJQFQqGr8m6P547u/ZLk/Pp78rU4znqrgzOSEOCtWJmzR0qVLmZyczAYNGjAiQvl/Ojp37iy36oQoBNQOgAkA/Cw8Rk7WAt4JZYWSJ3kAmAdlOph4KLeFs1tHWAKgUJXRqGzZCfR/yFNlnLjt9VoSAkWO+Pr60t3dna+99hpv3bqV1v7w4UMeP36c7du3T2v7+++/1ShRCJFLagfAWwCmqDGwhUgAFIXC/z49xJPuTgyq487ou2FqlyMKsJMnT9LR0ZG7d++ml5cX+/fvn2G/t7d3htA3Z84ca5cohMgDtQPgHOR+br+CTAKgKDTm/R3GrRXcebq8E0NPHVK7HFFAde/enS1atGB8fDyrV6/OUaNGZdg/dOhQbtq0iSTp7+/Pq1evkiR3797N4cOHc+vWrVy7di3Hjh3LoKAgDh8+PO0ZwZkzZzIgIIC9evXirVu3GBkZycDAQE6YMIHr16/noEGDrPtlhShC1A6AHlAma/4LOVtrt6CTACgKleBTcVz4zDOMtwe31fbkio8HMPTkYV7VbWPQwun0n/Al71w9o3aZQiV37tyhvb09p0+fnuUxx44d47Bhw+jn50d/f/+09pCQEPbt25cpKSk8efIkx40bR5IcNGgQk5KSuH79+rTz9u7dmyR5/boy2fknn3zC2NhYPnjwwFJfTRQiiYmJ9Pb2ZmJiotql2BS1AyAA1AIQCSAGytXAHSa27WoVl0sSAEWhk5hILvhlHWc0b09d+RIkwCQtGFrSjudKO/JaKTue2CITSBdF06ZNo1ar5fnz53PdNyEhgQMGDCBJTp06lTqdjsnJyfzoo49448YNDhkyhBcuXGBsbCwHDhzIsLAwxsbGknwcCENCQsz3ZUShJRNBW4baAbA+gAgob+BmtxnUKC4PJACKQs1oJINPhPN6aAofPiSj7hs47YXXed9Jw+3Tf1O7PGFlHTt2pKenZ5767t27l4sWLSJJDhkyhEajkffu3eO3337Lw4cPc8uWLZw/fz5XrVrFMWPGMCgoiN988w2XLVvG0aNHc8eOHbxw4YI5v44opCQAWobaATAASrj7FspcfHZqFGFGEgCFzUlJIX9uP4CxDuC/nd+gbvYEhp3en7bsnLBNer2eLi4u7N69u9qliCJOAqBlqB0AHwJYqcbAFiIBUNgko5Gc8ulv/LdqBZ4r7cAUDRhRXMOtI/tSn5KsdnnCAnQ6HTUaDSdOnKh2KaKIkwBoGWoHwHsAflVjYAuRAChsmtFIBgeT06c+4OevjuVVV3serVyCJzYsYfTNazy2aBo3D+jJg/Nmql2qyKfJkydTq9WmveErhFokAFqG2gFwFYDdagxsIRIARZGyac09/lGvORPsQAIMKanllkql+dARvLhnp9rliXzo1KkTtVotw8JknkihLgmAlqF2APSCssrGaAAaC42Rk5VAciIQygsp07I5RgKgKHIMBnLV/FNcs+QSb9wg9XpyTsMGPObpQn2irAlbWLm7u9PDw0PtMoSgXq9ncHAw9Xq92qXYFLUD4Dwoy7AZAFwBsDq17cnNNx9jLPt/e/cdHlWVsAH8nUsKEKqUUAMEkKIUQUBBpYmIdFBAXOy4grs0+RZWXCIgRUVXWdalJJTQmyABKRoFabHQQ1FAEpASIk1qIDPv98edhAlM+kwmmby/57kPmXPvPfdMOCQvd+45B+bav5MAvA5gK8z1fJtnoo4eMKepsUIBUCRdRw//wT2l/bniqSc83RTJgkOHDtFisbBNmzaeboqIuImnA2B6079kdxqYpvbzhzqU+QM4AjMIZoQ/gN8AjILuAIpk2NwPl/KqL7h5mp4HzGvCwsJosVg4aNAgTzcl09avX88FCxbws88+Y//+/ZNXHRGRlDwdAKtkYsuKD2He7StyV/lImKGyYgbqGA3gOMwgqAAokgmT23TlmQCDG0aP1LQxecjrr79OwzA4ffp0TzclU/7880/6+vry+PHjJMnOnTtz3Lhx2a7XZrPRqv4rXsbTAdDdNgKIdlLeBmYA7JjO+UEArgF4zv5aAVAkE65eTeT49i/wTICF2yqX5PYly3j2yGFumjWXSwYP447lqz3dRHHigQceoGEY3LJli6ebkml79uxJ/rpz584cMWJEtuq7ffs2Bw0axHPnzmXqvJEjR/LkyZPZuraIO3k6APpn8LiqWax/P8zBG3erAzPM9U/n/GUAtji8VgAUyYJdUTGc0fhhJhjmaOG4whb+XLYQr/qCC7p3pTXxtqebKHaXL1+mYRg0DIMXLlzwdHOy7OLFi6xZs2a2RzEPGjSIUVFRWbr+008/rY+gJdfydABcnoFjKsN8Bi8rjgJY46S8GswwNyiNc1sDSATQyKFMAVAkG/buOMJD+04zaTBf+JhpPFbch5urlmLsvt2ebZyQJCMjI2mxWFihQgVPNyXLIiIi2L9/fy5evDhb9URGRrJ///5ZPn/dunUcPHhwho49e/YsW7RowcDAQHbs2DHL1/RGGgXsHp4OgDYAn6WxvxzMARsJWaw/q3cACwDYB3MEsqMMBcCoqChGR0en2OLi4jz9dy2SK0XvOsHFNavymg8YWbMcl7/8Ik/8GMUD333HLz/6N8P6/5VbItZ7upn5xsSJE2mxWNiuXTtPNyXb+vTpwzFjxqR7nNVq5dChQzl06FA++eSTyXf8mjZtyv3792erDQ899FCm7kJWq1ZNq6/cRfMAZl9cXNw9uSQqKsqjAfAzmM/iDXeyryyAQzDvwvXOYv1pPQNoQ+rPAL4K4CaAR3BnEEpV+zmz7a8LOTmvGMxv5j1bSEiIp//+RXKthAQydPwX/PSxp7i5QlHetoA3C4DHixXgzjIBvOQPhg/J2J0UyZ4ePXrQMAwOHTrU003JtGXLlrFGjRrJr6dNm8aiRYume97YsWPZsmVLbtmyhSVKlOC6deu4a9cutmjRItttmjp1KkeOHJmhY+Pj42mxWLht27ZsX9ebKABmX0hIiNNsAg8GQAvMuf8SAfRxKL8P5h04K4AXs1F/aqOA30Hao4BD7PudTUeT9GcXJ+fpDqBINtls5IEDcTx/4c4aw7P7j+IlP3B+y0a8eeOaB1vn/apUqULDMDhr1ixPNyXTli5dyoEDBya/HjlyJFu1apXuedWrV+eECRNSlE2cOJH/+te/st2mffv2sXbt2hk6dsWKFSxatKg+6ryLAmD25cY7gIA5EGQrzDturQAUB7ATZtB6I5t1J80DOMyhzA/ArwC2OZRVBlDL4fX9MAPe3ZsNQASAzgACnVxPzwCKuMm62V8zumRB7g4syIVd2/HnVUs0tYyLJd2BMgyDO3fu9HRzsmTKlCn89NNP+eGHH/KFF17gmTNn0jw+NjbW6V23du3aMSIiItvtsdlsLFGiBE+dOpXusUOGDGGHDh2yfU1vowDoHp5+BjDJfTA/7r2IO+FvsIvqXgLzGcIPYD7zt83+uoXDMZvs10yPBoGIeNCR/ef4WbsXuSaoPK/4gqeKGNxYvRznt3qMC94awrhYrVubHevXr6fFYqGfnx8TEhI83ZwUNm3axLFjx7Jt27b84YcfkstbtGjBl19+OdP1Xb16lf369eMjjzxCPz8/9uvXj/369Ut+Xq9MmTI8duyYS9rSpEkTbtiwIUWZzWbj1KlTOWDAAI4fP56ffvopGzVqxI8++sht7zmvUgB0j9wSAAFzzr1TMD9eHeHCejOyFvB3MD+GTo8VaQ9aUQAUySHHj17mzP/7hP99qiuX1K3Bg/f58XBJP27/ckP6J4tTkyZNosViYf369T3dlBQuXryYPKHz008/neL5xBdffJH16tXLct3vvPMOGzZsmKLMarXSMAz+8ccfLmnLU089xWnTpqUoe+GFF9i5c+fk1/PmzaNhGPz555+zfB1vpQDoHjkdAJ2t8+u4bQcQ76Q8O2sB5yQFQBEPuXEtgXObNOH5ghYuGzPR083Jk55//nkahsFXXnnF001JYeHChYyJieH58+dZsGBBrl27Nnnf6dOn2bVr1yzX/cwzz9xzN+3cuXM0DIO3b987P2VW2tK7d29+8MEHya+nTZvGggULMj4+PrlsxYoVLFmyJG02m9vfc15z8+ZNhoSE8ObNm55uilfJ6QCY0bV/XbUWcE5TABTxsBm9XzcnmG7WkLOe68nwv73F5WPGcPm7o7h06FAuGTiQx/fs9XQzc6WkFUCmTp3q6aY49fHHH7Nq1aopymJjYzllypQs11mhQgV+9tlnKcri4+NpGEaaH4Nnpi19+vTh5MmTSZof/VapUuWeADdw4EB269YtW9cRyYycDoCZWfvXFWsB5zQFQJFcYMUHoVxW536ur1qOUYFFebCkP/eWKsiowAD+EFiYl/zBRX170Xr7VvqV5RMJCQn08fGhYRhZWvkiJzRr1uyepd0++eQTxsbGZqm+c+fO0WKxcPPmzSnKbTYbCxQowLNnz7qkLe3bt+fcuXNJkocOHaLFYrknZNeqVeueIJrZ64hkRm56BtAbKACK5HI2G/n5397nryV8uCswgF8Mfosr3x7E5YPfZMS4d2m15s8pOPbu3UuLxUJfX99cu3xZ4cKFuWLFiuTXCQkJ2ZqvcMOGDTQMw+nP7HLlyvHQoUMuaUuTJk24bt06kuTu3btpsVj4/fffJ+8/ceIELRYLo6OjefjwYS5btixL1xHJDAVA11IAFMkjYo6e53+bPs6osgHcFliU35crxlMBBr+pXoYxBw54unk5buHChbRYLPcMiMhNatWqlSIcjRo1iidOnMhyfRMmTGD16tWd7mvbti1XrlzpkraUKlUq+Y5dQkICK1WqxDVr1pAkr1+/zq5du9LHx4ekOf/guXPnsnQdkczI6QB4EMBAD57vbgqAInnY/p9i+GX1SjwVYHDF+Mmebk6OGjVqFC0WS7bWvnW3HTt2sEePHhw3bhxHjBiR7bkKn3vuOfbt29fpvnHjxnH48OHZbsvBgwdZpUqVFGVRUVHs2bMnx40bx9GjR/P06dN89tln+fbbb9/zbJ+r37NIEk8MAhntwfPdTQFQJI+7fcvKad3+wqu+5lJ0P5UL4MbqZTnvqZb85aefPN08t+nevXueXQEkq4KDgxkeHu503+HDh9m4ceNsX2PatGkcMmRItusRcTVPBMBvYYa4rGxWKACKSA7Yu2UvF4VM4YyXh/Hz9s9xfVAgbxYA19aqyJUTPmaikylC8rLatWvTMAz+8ssvnm6KW4WGhnLy5MnJ06s4m+svSfv27fnjjz9m63qNGzfm4cOHs1VHfnflyhXWrVuXV65c8XRTvEpemQbGcVMAFBGPiFyyibOaNuW5QhbGFi3A+S2a8ruFS5Pnbsurbt26RV9fX5YuXdrTTXG7YsWK8bXXXuO8efNSrBvszM6dO9mrV68sXysyMjJfrdjhLpoI2j1yOgC2dMGWm6eEUQAUyQcuX7jG2YPHcOX9VXnNB9xX2p+zO7TjboeRnXlJ0gjgLl26eLopbhcSEsJRo0bxzTff5NWrVzN0vOMgjIy6cuUK27dvz/Pnz2elmeJAAdA98sMo4IwsBedMDwCLARwDcA3AYQCTARRP4xwFQJF85uSRs5zZdyC/CSrDWwa4t4w/V9SrxjnduzAyLJQ2q9XTTUzX/PnzabFYUqxWISabzca3336bp06dytR5w4cP5/79+93UqvxFAdA98kMAXAQgAcAkAK8D2ArgFoDm6ZwXD2APgPcAvArg3wBuAjgAwD+VcxQARfKx/VsPMeyNUQxt3opfVS3HS37gjopFuPidd3L1/IIjRoygYRjcunWrp5viNZwtIydZowDoHt4eAJvCfG5wqEOZP4AjMINgWp5wUtbPXt+rqZyjACgiyY7u/53TW3fk2cIGD5TyZWTV+/hdUElurlyCSx56gCvGTOLNa9c83Uy2a9eOhQoVSnPpMxFPUQB0D28PgB/CvNtX5K7ykTBHFFfMZH1FYAbAj1LZrwAoIveIP3WJYS8N48yer3Dmc69yRu9XuaDBg/y9iMEL/haurluFS954hTF7tnmkfaVLl2abNm08cm2R9GgUsHt4ewDcCCDaSXkbmAGwYybrqwkzAI5IZb8CoIhk2M0bt7l4UihnPPIYtwUW5S0D/PU+Xy7p1paxB3blSBuOHTtGi8XCsWPH5sj1JP+KiYmhxWJJsfn7+zM4OJj9+/fnyZMnPd3EfMXbA+B+AF87Ka8DM8j1z2R9oTDvKFZPZb8CoIhkSWIiuTHiFMd3/j9urFiaNwuAq2tV4Myu3Rg+8G9c/fEnPLLb9RNRh4WF0TAMRkVFubxuEUdJAbBevXocM2YMx4wZw6FDh7Jhw4a0WCwsX7484+LiPN3MfMPbA+BRAGuclFeDGQAHZaKuvvZzJqRxjAKgiGSb1UpumLeJc5u34Ppq5fljYBEeL+rD2xZwd9mCDG/Vgms+/R8vnM3+L8tevXqxbNmyKcq+//57jhgxgmFhYRw4cKCeDRSXSAqAzz///D37unbtSsMwOHr0aA+0LH/y9gDoqjuAj8OcQmYtACON44oBYFRUFKOjo1Ns+l+NiGTX3u3HOL3vW1x5fxXGF7LQCvBYcR9uqFaW8x5txtkvvsF10+bzUvylDNV3/fp1FilSJMWatzdu3GD16tV548YNkuTEiRM5adIkt7wfyV/SCoDLly+nxWJhp06dPNAy7xcXF3dPLomKivLqAJjWM4A2ZOwZwAYALsCcP7BwOscWg/nNvGcLCQnx9N+/iHiRxNtW7tq8lwtGfciZnXpwcf3a3F6+KC/4g9d9wG+DSnN2p67csnAlE2/dSj6vWbNmfOmll0iSU6dOZeHChRkTE5O8f926dWzVqlXy6y1btrBJkyY59r7Ee2UkAHbv3t0DLfN+ISEhTrMJvDgApjYK+B1kbBRwdQBnABwEcF8Grqc7gCLiUdZEKyMXRnB6p27cULU0r/iCl/3AzZXv49zHmrNMyfvYu3dv7tmzh6VLl+b48eNTnD99+vQUv4QPHDjAIkWK5PTbEC+UVgDs3LkzDcPg5MmTPdAy75cf7wAmzQM4zKHMD8CvALY5lFUGUOuucwNhrgJyEkBQBq+nZwBFJFe5fOkav/x8EWf07MsVdYIZ4QsGGWCAjw+7t2jF1Z/OZOT8lTy88wBJcsKECSl+QR87doyGYXiq+eJFHAeBvPfee3zvvfc4ZMgQNmjQgBaLhc2aNXO6PN/NmzcZEhLCmzdveqDV3svbnwEEgCUwVwL5AOYzf9vsr1s4HLMJZlB0tAfmXcKJAF64a0ttKTkFQBHJ1S7EX+LsAf/g6hoV+UtJX/5exOBlP9AKMLqUP18MqshHaj/IMyfOkDTXCS5VqpSHWy3eICkAGoZxz9aoUSNeS2VSdE0E7R75IQBmZC3g7wAk3lVmTWP7NpVrKQCKSJ4Uc/A3zh0wnKOCg/hIAQsTDHBLxeIc/tBDrFa+Indv/oHWxNy/rrHkXs4+Aj59+jSHDBlCi8XC3r1733NOREQEJ06cSADs169fipCY1mh1jWRPX34IgDlJAVBE8rSEhAQGBQUxculXDHv2BfYtWZTD/A1aAV7xBXeXLcRVtatwTutWDH9jENf9bw5jD/5Cm1XhUNKW1jOA3bt3p2EYXL58eYrjP/nkk+Sg0qlTJw4YMIBk2qPVNZI9YxQAXUsBUETyvIiICA4bNoxhYWEcMGAAExISePHcJX49dyVnvzmcoW2e5Io61fhDuQDGFbaQMAeabKtYjOGPPcpFI8cw9tBRT78NyWXSCoBHjx6lj48Pa9eunVy2evVqFipUiOfOnSMAfvTRR6xbty7JtEerayR7xigAupYCoIjkKzYbGXP0FCOmL+X0Xi9z2QM1+GsJXxLgHwUt/LFcAFfVqco5rVpyzqtvcs2UUMYe0B3D/CitAEiS/fr1o2EYXLRoEUkyMTGRu3btSg4qgwcPZpcuXUimPVpdI9kzRgHQtRQARURIxv5yghFT53PWa4MZ2vpJLqtbg9vLF+PZwgYJ8KI/uLNsYa6sU5WhHTpy0egPePDnaD1n6MXSC4CHDh1igQIF+OCDD6YoTwoq1apV4y+//EIy7dHqGsmeMQqArqUAKCKSjtgjp7h22mLOfnMYZ7VqxbXVK/BYcR8S4J9+4P5S/txQrQwXNnqAoR06cM7AIfzio//w2wXLuWfzDp4/o3lV86KYmBgahsG+ffumekyvXr3ueRYwMTGR3bp146ZNm5LLpk6dyj59+iS/dhytntY+uUMB0LUUAEVEsigu9gwj563igrdDGNqtN8ObNWVEjUr8KTCAsUUL8JI/SJhbTNEC3FitDMMfbcpZL/XnV9Pn8XxcvKffgrjBhx9+yJ07d5Ikjxw5QpL8+uuv2bp16+RjIiMj2ahRo3T3yR0KgK6lACgi4kY3rt3ivu37ufi9f3NGl2e5qEFdbqtQjBf8zbWRTxQ1+HNgYa4PLsvlD1bnsno1uaxeTS6pfz/nNH+EM7t055w3BnP5xCnctuprxv1+1tNvSdIwZ84crl27lmfPnuWZM2f48ccfk7wzWv3PP/8kaS519v7776e7T+5QAHQtBUAREQ+wJlq5e9NOrpg0jbPfGM4ZnZ9j2BOtGfZEK4a1bMXZjz/ORQ3rcl1wOf4YGMCYogWYYJh3E88XtHBH+aJcUr8WQzt25uyX/8qF/xfC1Z9M4/fLIvjrrv28fuWKp99ivrN9+3b6+PikmDD673//e/J+Z6PVM7JPTAqArqUAKCKSRyTetvLI3iNc8/l8hr00gLObN+eaGhW4pWJx7itdkCeLGLzqe+dj5yu+4G/FC/CnwELcULUkV95fgYvr1WB4k4ac9cTjnNm+I2f0eIEzX/4bw4eO5vLxU7hx5iLu/moTzxz4ldYrV81h0yStVhutVpuHvwOSn+WHAJiRlUBSUwHAUgAXAVwGsApAtTSOVwAUEfEiNht5Pu4y92zZy6/Dv+TKCf/lor/9kwv6vMLwDl0Z/kQrLni4EZfXu58R91fmN1VLlLyPUwAADYhJREFUc3uFotxXuiB/K1aA8YUsvFngTohMtJgjoE8UAw+UBqPK+TGyclGuCQ7k0jpVOf+hBzineTOGPdmWoV17MOyFV7ngH2P47aLVjD99ztPfDvEi+SEALoK59u8kAK8D2ArgFoDm6ZwXAOBXAGcAvA1gMIBY+1YylXMUAEVEJIVbt638LSaOWzft5LY1m7lz+XpGL1jJnf8J48Z/juXy1wdwfs/nGN7uKc579FEualiPX9QO5rrg8txcqQQP3OfPaz53Pq4+WcTgryV8ubdMQW6uXJKrawVxQeP6nNWmDUOf7cu5bw3nsnGfcM1/ZvHreSu4Y+23PLBjN38/FstrV67SZstbdx4TExMZHR3NxMRETzfFq3h7AGwKwAZgqEOZP4AjMINgWv4Bc93fRg5ltQDcBvB+Kud4ZQCMi4tjSEgI4+I09YLkberLkldZE6089NMBrp+5mF98NJ3Tho1m16aP8ePufTizXQeGN23M5XWD+U2V0txZtjCPFffh6QCDl/zBW8adO5AEeNtirtxyJsDg4ZJ+3FS5JFc8UJ1zWzzK2W2fZNgznRjWozdn/3Uol02axi2rt/L3mItMvO2ZORqTgoq3/W71NG8PgB/CvNtX5K7ykTDDXcU0zv0B5sfFd1sP886gM14ZAKOjowmA0dHRnm6KSLaoL4u3yExfttnIq5ev8cSRkzywYx93rN3Mr8NXcfWUOVww4n3O7PMyw1q24qIGdbiiTjBX16zEDVXL8qfAAP5exGCixQyOCQYYX8jC34r7cE+ZgtxasRg3BJflVzUrcG3tSlxTN4grGtXmvDZPMOzZPpz1xlDOG/IOl4wax1UTJnPdf/7LzXNC+dMXC7ln3Sru+WYj927ayujtu3l032Ge+u0k/zgTz+MHjnJXZBQ3LVnLb+ev4ldhS1i7RAVuXrmel/64mK3vmzXRyrWfz+OsVq24uH5tzn78MYZ2fZbhg//JA1F7s1X33fZv383Qrj25Lrgcwx9pwnmD/8kjew679BrZ4e0BcCOAaCflbWAGwI6pnGcBcAPAVCf7xtrPDXCyTwFQJBdTXxZvkZN9+XbCDcYcOMjtEZH8cupCznv3U4a99S5n/OVNzujam9Oe7sbP23bifx9/mtObtuDiuvdzQ9Wy/LFcAPeUKcToUv78pYQvjxcrwFMBBuMLWXjJH7zuA1qR8u6k43bNx7xT+aefOQDntj2IXvC38HBJP+4tXYi7ywTw57LF+GNgSe4oV4ZbK5Tn9xUrcVOlKvw2qDq/qVqT64NrcE2NYK6pWZm/FzF42Q+MqFmJc1s059J693NDtUBGl/KnFeCR4j78om4ww5s25pwWzRnWujXDWrfmnMdaMLzZw5z/8EMMb9aYcx5txjktmnPWE49zVqtWDGv7JGe1fILhzRpzcYM63FqxOG8Z4JaKxRnW7mkuqVeLB+/zoxVgbNEC/KZKKc5v8hBDu/bk7Jff5MLhIfxy8jR+v2g1D+3Yzat/XEgeMOQu3h4A9wP42kl5HZgfDfdP5bxS9v2jnOwbADMA1nSyLxgAjx7N3CLomf1YKjPHZ+TY9I7x1l+anv440F3Xd0W92anDXf1ZfTl16svuqUN92fVsNvLqVfLPP8nr18lbt8gb1xL4x5nzPHHkJHd8u4NvDxnO30+eSj4nKajEx8Xz4A/7uW7mYi7453jOGfYOZ/59CKf99a+c+tpL/OzFXvx33y6c3Ls9P362LT/q/gQ/7tycUzo+wf91aMuZ7dtz8b8+4JVLzqf0if0lhp+/9Q92DQri5/XrcnGDOlz+QHUuf6AGF9evzQWN63Nek0Zc0LgBFzaqx8UN6nBJvVpc/kANflGnGpc+WJMLGjfgnBbNGdqzD6O370muO+nv84fvdnDZ+58ytOfzXNC4PtcHB3JrhWLcV9qfsUXNcJoUgBMMMK6whb+W8OVPgYX5XeWSXFClLHuVLsHZNSpzVa0grq5ZiWtqVOBX1ctxfXAgN1Ytw2+qlOK3QfcxMqgUv7y/Mhc1rMspDz/MLtWq8ZO27Rnasw/XTJ3r9QHwKIA1TsqrwQx4g1I5r5J9/3An+16BGQDrO9nXFACjoqIy9Q8is/+QM3N8Ro5N75i8+oMmPZ5+X+66vivqzU4d7urP6sup8/T7Ul/O3PHqy6lz9r5y8hnA3NCXL168wn0/RXPTio38cuocLhr9AecOGM6wvq9wTMu2BMCxjzRnWPsODO3QiaEduzG0Sw+GdnuOoT2fZ1ivfgx7/mWG9erH0Kef4Zzmj/KjWsEEwKlBZbmhWlmGvfCa1wfAnL4D2BQAv/nmG16+fDnDW1RUFGEPjq4+PiPHpndMZtuXVzZPvy93Xd8V9WanDnf1Z/XlnO9Lnr6++rL68uXLl3ny5EkC4MmTJz1y/dxUb1brSev7Ci8NgGk9A2iD658BrA/zm6lNmzZt2rRp05YXtrQGxOZZqY0CfgfpjwL+Ec5HAW+AOY2MMxZ7ncW0adOmTZs2bdpy+VYRZnbxOknzAA5zKPODOY3LNoeyyjDn+HOU1jyA413eUhERERFxmSUwVwL5AOYzf9vsr1s4HLMJZlB0VATmnb6zMAeDDIG5CsgJmM8IioiIiEgulZG1gL8DkOjk3AowA6TjWsDBbmtp3lca5qjrqwAOwXzWUiQvehPATpiPkIz2cFtEssoPQBjMmxeXAGwH8IhHWyQiXmkpgJkwl9vrDOAPACU82iKRrOkCoBOAhVAAlLyrMIB3ced5994A4u3lIiIuEQDzo/XyDmXfAnjJM80RcYn/QQFQvMspAA95uhEi4hkBAMYAWAfgPMznH19M5diMfIQOAA1h3vFzNAXmSGwRd3FHX3akACg5xd19GTDnr70OoGh2GysieVMVmD9cjgOIhDnaObUfNItg3tmbBOB1AFthPhfV/K7jHgPw211l7wP43DVNFnHKHX3ZkQKg5BR39+WCMIPiuy5qr4jkQb4Aytq/bozU/6eZNI3OUIcyf5ijo7fedazuAIonuKMvO1IAlJzizr7sA3OAXrhLWioiXiGtHzSpTaQ9EvdOpB0A4Cb0DKB4jqv6siMFQPEEV/ZlC8w7hqvgpRP+ikjWpPWDJq2l9Ky4dym9JQBmwPyooRPM0WYaBSw5xZV9uQDMfjwDwDiYd1gMl7VUJG2u7MszYU515ufKBopI3pfWD5r9AL52Ul7Hfk7/u8pLA1gL4BqAwwBau66ZIulyZV8OsZdbHbbUnscScTVX9eUge9k1AFfs259IuRCCiORTaf2gOQrzuZG7VbOfM8iN7RLJLPVl8RbqyyLidq68ayLiSerL4i3Ul0XE7bL6rIkN9z5rIuJJ6sviLdSXRcTtsjLa7B2kPXJSxBPUl8VbqC+LiNtlZL6pYQ5lfgB+BbDN/U0TyRT1ZfEW6ssi4jZvARgFc6UOG4Dl9tejkHKZoCUwZ5z/AOazJdvsrzWKTHIL9WXxFurLIuJ2x5FyigvHLcjhuKyuOSmSU9SXxVuoL4uIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEh+FgLA5rB9ftf+OfbyIHheY6Rs62+ebY6IiIhI3hQCwApgFoDRAJ65a/9s+/7cEADLw2zjaAAXoQAoIiIikiVJAfCJVPbnpgDo6DgUAEVERESyRAFQREREJA+qAvOZuFkAagJYAiAOaQe7JFkNgA0AnAJwCUBbh3IbgG9hflw7z96O6wB+BvB8Gu14CkCE/fibAE4AWHVX3Y4UAEVERCRfSwqA3wO4AGAHgI9hDuhomM65WQmAbWEGv5MA6t11vA3AbpgBbReAiQD+B+C8fd/bTq4xxr7vMoC5AN6HGWYP2/90RgFQRERE8rWkAGgFMC6T52Y2AP4FQAKA/QAqOTk+qR2LnLTxPMy7e1Udyp+yn3MEQDkn9VVIpV0KgCIiIpKvJQXA0wB8M3luZgLgSPvXmwAUT+V4G4Bb9jaldq1/OZRF2Mu6ZLLdCoAiIiKSryUFwHVZODejAfAL+zWWAPBLoz4bgKOp7Gtp3/+FQ9k5AIkA/DPeZAAKgCIiIpLPJQXA2Vk4NyMB0AYg3n7ci+nUZwOwLZV9tez7Ix3KbtnrziwFQBEREcnXHEcBZ1ZG7wC2APArzLt1r6dRn+4AioiIiOSAnAiAQTAHaRywvx6QyvFJzwA6mzfwPft+x2cAV9vr65rJdisAioiISL6WUwEQAErBnObFBmCok+MdRwFbHMqrwZyiJsH+dZJ2uHPX0NmIX40CFhEREXEiJwMgAJQA8IP9mu/cdXzSPIC/wZwHcBKA6TDDnxXAMCfXGGPf5zgP4EwAh6B5AEVEREScqgIzQIVl4dyMBMBE3PuRbhEAW+znjnEoT1oJpByAcABnYa4E8hOA3mm042kAXwH4A8ANALEAVgBolcrxCoAiIiIiWZReAMyspADobgqAIiIiIlmUFABt9u3zbNbnzgDYGHfaaYUCoIiIiEiWtAQw2mF7Jpv1uTMAlkfKtg5y03VEREREJBOsSDnRs4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI5F7/DzxxsfPCHKu1
AAAAAElFTkSuQmCC\">"
"<img src=\"
PACAYAAACl4sj7AAAgAElEQVR4nOydd3xT1fvHP0npgLL3RhFZyhJkiSiyVEABQRkigqAoggoOEKWICohMRZANfnGAgAj8QFFkiFhEcFBAlmywbCijpU0+vz9Ob27SJmmS3qz2eb9e99Xk3DOem9wmn5xznucBBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBMEpTwDYDOAyAAsAc4DG/QaAFcADARpPEARBEARBSKc1lAjsg8AJwKcAfJc+nghAQRAEQRCEIHEfnAvARgA2ADgH4DCA0U7qeEN5AEfS/8oMoCAIgiAIQhBxJgCrAUgC0BWACUAFAH8AGJ6Ncb4H8Ez6YxGAgiAIgiAIQcSZAJwK4PMM9XoAOGD3/HB6O6uTwwJgpF3dF6AEoIYIQEEQBEEQhCDiTACuAXAdwAW74xKUw4hGIQBF3Rwx6fVuA3AKahZRQwSgIAiCIAhCEHEmAOcBmGNQ/70BJAM4A+Bs+mEFcBHApwaNIQiCIAiCIHiAGUA0gDZQAjBf+nMTgAZQM35dAESm170NQFsfxokBUDbDYYXaX1g4W1cgCIIgCIIgeEVv6Pv1LHaPm6efvxtq394ZqCXgnQD6GzS2hIERBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBO8wASgHoKAccsghhxxyyCFHCB3loHSK4AdqA6AccsghhxxyyCFHCB7lIPiFhgD4448/8vLlyx4f8fHxBMD4+HjD63tSN6s63toXDkewr8lf4xvRr699+Os+lns48PdRMMfOifewp3Vz433s7JqOHz9OADx+/HjAxw6lvo28j7XXFGomUPADDZH+ontDQkICATAhIcHw+p7UzaqOt/aFA8G+Jn+Nb0S/vvbhr/tY7mHXBPO65B6Wz2IjcHZNly9fJgBevnw54GOHUt9G3sfaawoRgH6jMgAePHjQqzcrMTGRcXFxTExMNLy+J3WzqpMTP3S8fc3DZXwj+vW1D3/dx3IPuyaY97Hcw/JZbATOrjktLY0JCQlMS0sL+Nih1LeR97EIQP9TEAH41RJocuKHjpC7kHtYyAnIfSz4ighA/yMCUBBCELmHhZyA3MeCr4gA9D85UgAGe7lUELKL3MNCTkDuY8FXRAD6nxwpAAVBEARBCF9EAPofEYCCIAiCIIQUIgD9jwhAQRAEQcgGgfICzk2IAPQ/IgAFQRAEIRsEKg5gbkIEoP8RASgIgiAI2UAEoPGIAPQ/IgAFQRAEIRuIADQeEYD+RwSgIAiCIGQDEYDGIwLQ/4gAFARBEIRsIALQeEQA+h8RgIIgCIKQDUQAGo8IQP8jAlAQBEEQskFycjLj4uKYnJwcbFNyDLlRADYAMA1AAoCrAI4CWAzgdg/bFwIwC8CZ9PY/Aajnpr4IQEEQBEEQQorcKAC/BnASwBQAfQG8CeA0gCQANbNoawLwC4ArAN4C8DyAXQAuA7jNRRsRgIIgCIIghBS5UQA2BpAnQ1kVADcAfJZF28cBWAF0sisrDuACgEUu2ogAFARBEIRsYLGQnTqR3buTVmuwrckZ5EYB6IrfAWzPos5iAKeclH8KNYMY6eScCEBBEARByAb795OAOk6eDLY1OQMRgDrHAazNos5+AKudlPcFYAFwh5NzIgAFQRAEIRvs2KELwH37gm1NzkAEoOJJqKXd3lnUSwIw20n5Q1ACsLWTcyIABUEQBCEbbNyoC8CdO4NtTc5ABCBQHcAlAD9DOXm4Iw3KgzgjLaAE5CNOzokAFARBEIRs8PXX120C8Oefg21NziC3C8BSAA4BOAygtAf1fZ4BjI+PZ0JCgsORmJgY7PdfEARBEEKeuXOv2QTgd98F25rwIzExMZMGiY+Pz7UCsCCAPwCcBVDNwzY+7wF0dsTFxQX7nhAEQRCEkOejj/QZwGXLgm1N+BEXF+dUhyAXCsBoAJuhZvQaetFuCZx7Ac9CFl7AMgMoCIIgCL4xduwNmwD87LNgWxN+yAygwgzgWwApANq6qVcaamYwwq7scaiZvs52ZVocwM9d9CN7AAVBEAQhG4wYoQvAGTOCbU3OIDfuAZwC5bCxAkBPJ4fGgvR6Fe3KzAC2QmX+eBt6JpBLcJ1KTgSgIAiCIGSDl15KtgnACROCbU3OIDcKwA1Qs3iuDo35UF6/FTO0t88FnARgPSQXsCAIgiD4jf79U2wC8J13gm1NziA3CsBAIwJQEARBELJBr156HMDXXw+2NTkDEYD+RwSgIAiCIGSDTp10AThwYLCtyRmIAPQ/IgAFQRAEIRu0bq0LwKefDrY1OQMRgP5HBKAgCIIgZIPGjXUB2LVrsK3JGYgA9D8iAAVBEAQhG9x5py4AH3442NbkDEQA+h8RgIIgCIKQDW65RReA990XbGtyBiIA/Y8IQEEQBEHIBsWKWW0CsEGDYFuTMxAB6H9EAAqCIAhCNoiO1gVgjRrBtiZnIALQ/4gAFARBEAQfuXlTX/4FyIoVg21RzkAEoP8RASgIgiAIPnLhgqMALF482BblDEQA+h8RgIIgCILgI8eOOQrAvHmDbVHOQASg/xEBKAiCIAg+snu3owAESIsl2FaFPyIA/Y8IQEEQBEHwkW3bMgvApKRgWxX+iAD0PyIABUEQBMFH1q/PLAD/+y/YVoU/IgD9jxKAly4F+70WBEEQhLBjxQol+kwmXQAeOhRsq8IfEYD+RwnAbduC/V4LfqJmzZqMiIigyWRyOEqUKMFr16751Ofbb7+dqT+TycTo6Gh++eWXBl+B97Rr145NmjRhtWrVWLx4cebJkydb/Z07d45NmzZl8eLF+d133xlkpSAIOYFFi3TvX00A/v13sK0Kf4IhAMsA6AKgll1ZJQCNAOQPlBEBRAnAd94J9nst+BGr1cqEhAS2adOGlStXpslkotls5sKFC73uKy0tjZ07d6bZbKbZbGZkZCS/+OILXrhwwQ+W+8bIkSPZr18/5s2b13at2eGtt96y9VOuXDmDrBQEISfw6adK9NWsqQvAX38NtlXhT6AFYHMA1wBYAaQB+CC9PBpARwCWQBgRYJQAbNIk2O+1EAAWLFjA3r1720RgixYtvO5j5cqVnD17tk0Q3XrrrX6w1BjshVt2GDFihG2Ws0KFCgZZJwhCTuDDD5Xoa9KEjIlRj3/8MdhWhS9Wq/obaAG4Dmr2rwCAmgA+A/Bh+rnSUMIwp6EEoMlEnjsX3Hdd8DsLFixgnz59+M4779BkMjEiIoKHDx/2qo8ePXrwypUrYSEA58+fb4gAPHPmDJs2bcqSJUty5cqVBlknCEJOIC5Oib42bchixdTjb78NtlXhidWqXseRI8kjRwIrAEc5KesLoA+AUsjJM4CA2sgg5Gg0AXjkyBHbEu6oUaM8bn/27Fn26dOHJMNCAC5YsMAQASgIguCKoUOV6GvV6jIrVlQ5gb/4IthWhSdr1+rL6OvXB1YADkn/WzlDeTsoIZizBWC3bsF+7wU/owlAkmzRogVNJhMrV67scfvJkyfzx/S1DRGAgiAI5LPPaqJlAatVSyNAzp4dbKvCD6uVbNRIvZYPPxz4JeCGAMZACb3GGc7dB+BKIIwIMEoA3nUXWaiQymot5FjsBeDChQtt4mjDhg0etW/fvr3tsQhAQRAEskcPTQB+zHr1lACcMiXYVoUf9rN/v/0WHC/gvHD0ALbn1kAZEUCUABw+XL3qHgoBITyxF4DXrl1jgQIFaDab2bt37yzb7tixg2+//bbtuQhAQRAEskMHTbiMZbNmqQTI998PtlXhhf3sX7t2qkziAPofJQA3b1av/NChwb0LBL9iLwBJsm/fvjSZTMyfPz+vXr3qtu2gQYN4yC66qbcCMDU1levXr+e0adM4ZswYzps3jwcOHPDKfovFwk2bNnHq1KkcO3Ys582bx21uYlg6E4ApKSlcsWIFx48fzylTpnDTpk1ux3zjjTf46KOPslmzZqxRowZLliyZqc7+/fu5detWrly5knPnzuUnn3zicN2rVq3ihAkTOHPmTJf2btiwgVOmTOHkyZO5Zs0apqSkZPVykNRfk1mzZnHcuHGcN28eDx486FFbQRCyT4sWmgB8k23a3CRAvvlmsK0KL9ascZz9I0NDAHYN1sABQs8EUq4cWbVqcO8Cwa9kFICbN2+2CaR58+a5bJeSksJHH33UocxTAWi1WjllyhSWKFGCtWrV4rBhw/j+++/ziSeeYHR0NFu1auWREPz6669ZqVIllitXjgMHDuQHH3zA1157jW3atGHFihU5f/58p9drLwC/++471qtXjy+++CLHjx/P7t2702QysUGDBvzPRe6mV155hS1atGBkZKTL2UStXAsVU6ZMGZJK1DVs2JAvvvgiP/zwQ/bo0YMmk4n3338/k9KThe7Zs4dNmzblU089xfHjx/Pll19mvnz5WKFCBcbHx7t9TSZPnsxmzZpxwIABHDNmDD/88EP26tWL0dHRfOCBB5iQkJDl6yoIQva4+25NvAxmx45KAL70UrCtIjdvJlevDrYVWWO1kg0bOs7+kaEhAMcHa+AAoecCfu459Q7s2xe8O0HwKxkFIElWqVKFZrOZ9957r8t2ixcvziQQPRGAycnJ7NChAyMiIvjRRx9lOn/ixAnWrVuXhQsX5vfff++yn+HDh9NkMrFVq1a8cuWKw7mtW7eyQoUKNJvN3LJlS6br1excv349W7dunSnvde/evWkymRz2Nzpj2LBhLgXgsWPHuG3bNtatW9cmADdt2sRWrVrxUoY0i9p4PXv25IEDB3j33Xfz33//dagzb948mkwmli1blsnJyU7t+eKLL2xjZZxV3LFjBwsWLMhChQq5nSEVBCH7VK+uCcC+7NkzhQDZr19wbbpyhcybV6WnO3YsuLZkxQ8/6LN/27fr5aEgAD/MukpYowvAVavUOzBxYvDuBMGvOBOA7777rk3YHHKRwPKxxx7LtETsiQDs06cPTSYThwwZ4rLOmTNnWKhQIRYsWJD79+/PdH7u3Lk0mUwsUqQIz549m+l8hw4dbLZMmDAh0/Vq55o0acKLFy9mar9y5UpbHXfZTDRR5m4/4bRp02gymVi8eHE2bdqU55zE1tTGi4mJ4X333cc9e/ZkqnP58mVbmJ5vXQQUGzhwoM2ewYMHZzo/ceJEmkwm3nHHHS7tFQQh+5Qvr746u3RZwgEDlBNI9+7BtenXX3VRleF3ccjx9tvKzqZNHctDQQDmnhnAa9dUGHMfskMI4YEzAXjs2DFGRETQbDY7OHlonDhxIlMbMmsBaL+8fCyLn6AvvPACTSYTmzVr5lB+8eJFm6PKiy++6LTtZ599xqioKJYoUYK7d+/OdL2aDePHj3fafteuXbY6v2mbT5zgiUOJfZ133303y/Gefvppl30VK1aMZrOZE138INu6dSsrVqzIW2+9lTt37sx0fvfu3bZxZE+gIPiPwoWVgPm//yNff109fuQR/42XlkY6+S3rwJw5ugBctcp/thjBY48pOwcOdCwXAeh/dAFIku3bk3nyZH13CWGJMwFIkq1ataLJZGKlSpUynRszZozTMDFZCcCOHTvSZDKxdOnSWdpln7Hjjz/+sJVPnTrVVr7KzadYUlISbzoJYWQvyP7880+nbY8cOWKr484hxFsB6Gr/nv14X375pcu+brnlFprNZr7jY57uw4cP28bZvHmzT30IguAeq5WMiFACZtMm8p131OOWLf03ZocOZGQk+ddfruu88oouAD/7zH+2GEGNGsrOadMcy0UA+h9HAahltf7qq8DfBYLfcSUAFy1aZBMLP2ZIYtmmTRunfWUlAPPnz0+z2cxatWpladeaNWts/b1vFz+hffv2tvKM++Q8wV6QnT592mkdfwlAVyn27MdzF3/RGwF47tw5zp49m/3792fjxo1ZsWJFFipUyKPrEgTBd27c0IXWzp3khAnqcePG/hnPatXzDb/xhut6bdrodk2d6h9bjODmTTXnBJA//eR4TgSg/3EUgMePq3fiyScDfycIfseVALx+/ToLFSpEs9nMnj172sq3bNnCuLg4p325E4Bnz561na9fv36Wdq1fv95Wv5/d7uk777zTVp7RmcIT7AVZYmKi0zr+EoBHjx7N1nieCMBjx46xa9eujIyMZNGiRTlkyBCuW7eO586dc5gBFAEoCP7h7FldaO3fT86YoR578LvXJxIT9fHcjVG2rF7Pi2yfAWfPHt3OjIEYQkEA5h4nEI169ciiRdVGAyFH4UoAkmT//v1pMpkYGxtr87Tt16+fy5ksdwIwKSnJdt4TJ4SlS5fa6r/wwgu28oYNG9rKXYVpcUdOFoBLly5lbGwszWYzu3XrZgsr4+04giD4zr//6gLm1Cm13AqQXmTY9IrfftPHA9ScTUYuXnSsEwohaVyxdKmysWhRNbtpTygIwOeDNXCAyCwANZecn38O7J0g+B13AnDr1q02wTB79mxeu3aNHTp0cNlXVkvApUuX9ngP4CeffGLrb/LkybbyJ5980la+3T4+gIfkVAF46NAhxsTE0Gw28xEXu81FAAqC//n7b11oJSWRy5apx6VK+We8r792FHfOcg5v2eJY56mn/GOLEYwerWy8557M50JBAOZ0MgvAbduy3mAghCXuBCBJVqtWjWazmU2bNuXChQu5YMECl3WzEoCvvPKKx8u3WkiTqKgonjx50lZuvzdw0qRJbvtITk7m4sWLHcpyqgB85513bH1s3LjRafu9e/dmGmfSpEkOAlsQhOzxyy+60KpR4w5+8811AmT+/P4Zb+JER3HXqVPmOtpWfu1w8zs+6HTrpmzs3z/zORGA/iezALRY1M8XiR+W48hKAI4ZM8aWzaJ+/fq8du2ay7pZCcCjR4/a9hU6y9KhYbVaWbZs2UzLv9q5+vXr02QysXr16m6vbc6cOZmuLacKQC1sjtls5t69e522t/es1sYZNWqUz17FgiBk5vvvmS74rATA7767SkAFYM64pGkEgwer8fLmVX8LFCAzZo0cNMhRAGaIrhVS1KmjbHT2u1QEoP/JLABJsm9f9a744HkphC6jR49mq1atXJ4/ceKELSagO6FIehYIevXq1YyIiOBtt93mNAgzSX755Zc0mUxs0qSJ0/y3hw4dYpEiRWg2m106pBw/fpy33357JjGUUwWgfVBqZxlWLl26xGrVqrFw4cIOnt3Dhw/PciZVEATP0Zd8LQTAzZuTbMLr+nXjx3v0UdV3796k2ezce/aBB1R5iRLqb6jO5aSlkdHRykZniaCCJQDLAqho0FE2kIb7gHMB+M036l1x8uUihB+XLl3ivHnzWKBAAZpMJsbFxfHUqVNO67Zt29Zt7LizZ89y8uTJtpnCyMhIfv755y4F3oYNG1iuXDnWqVOH69ats2UUOXfuHKdOncrY2Fj27t3b7Wzjvn37WLNmTZrNZvbv358HDx6k1WrllStXuHjxYtaoUYNr1651aHPlyhWHPYTz589namqqQ52bN2867D8cPnw4b9y4kWn8ixcv2vIGm81mrlu3LlOdK1eusFevXrY6M2fOzHK8N9980+l427dvZ3R0tC39XcYMKBaLhZ07d6bZbGZsbCznzp3LGzdu0GKx8Mcff2SdOnU4depUDh06lGazmYMGDWJKSgobN27sUzgdQRCcs2CB5vSRRgDcsUMXgE4SF2WbunVV31OmqFAzAPnaa451SpbUl4cB5REcihw4oM9SOssVECwBuBfAPADzDTj2eTl2LIB3AKwFcB6AFcBTHrbtnV4/42EBUNJFG+cCMCmJjIpSwYSEsEbb15fxMJlMjI6OzlR/xYoVrFOnTqbyL774gtHR0U770vqLiYlxGtz46tWrnDFjBps3b86yZcuyWLFirF69Ovv06eNxrtqbN29y4cKFbNmyJcuXL88CBQqwUqVKfOaZZ7gvQ/5qzTs24xEZGWlbZn744Ydts532R0REBO+8884s+4qOjuYvv/xi6Hhjx45lZGSk09c2NjaWxzO4/K1YsYKdOnVihQoVmC9fPpYvX55dunThr7/+SpK8du0ae/TowYIFC7JevXpcv369R6+1IAieMW2aEjC1aysBuHfvFZuoOXLE+PGKFlV9f/ON7kBh93HlEJZG2y+YN6/xdhjBt99qy+fOl8uDJQB/NbCv7V7WrwQl2g4DWA8l3rwRgBYAbwLokeGIctHGuQAkybZtlQhMDwkiCIIgCILOuHFaHttUAuDRo5dtAixDZspsk5TkGHR6+/bMM2gbN6rnERGO3sDJycbaYgRjxyrbGjZ0fj5YAvAlA/t6xcv6kdBn6+rD+xlAC4C7vBjPtQDUIlqGeh4ZQRAEQQgCI0aor8k2bVJZs2ZNXrigLwG7SS3uEwkJuqA7d075a2rLvZ9+qup88ol6Xr06efCgXt9FIqSAsnw5OWYMqe2M6dVL2eYqJXo4OIFEAijhp76zIwDzAzB70Ma1ADx3TiUcbN3af3eEIAiCIIQpL72kRMzjj+tlkZGqzE2mR59Ys0b1GxurL5k+/bQqq1hRBYB+/nn1/LHHyPPndQG4Z4+xtnhLUpLu8KH5oTVooJ5/8IHzNqEmAD+G2huoZQfpBuASgAsA4gGUM3g8XwSgFcCV9L/JAL4FUMVNG9cCkCQ7dlSuRnax2QRBEARBIJ95RomYvn31ssKFVdnq1caOpS3K1ayplx06pELBAGSPHmTz5urxyJHKy1YTgOnblYPG6tW6LQULqrRvsbHq+apVztuEogB8AkA+AMUB3IBy9DBD7d37yODxvBWAXQHMBfAkgEegnEmuAkiEa3HqXgBqPu4ffui/O0MQBEEQwpDHH1dfkYMH62XlyqmyDHHps+S779QMnqvl2mHDVL8PPuhYrnkiA3pomCVL1LlChfwjRr1FmynVjrZt9ceHDjlvE2oCMM7u8YtQy632wupdg8fzVgA64x4oO6e7OO9eACYnk0WKkLVr++/OEARBEIQw5OGHlYgZMUIvq1pVlc2b51kfaWl6BlZAPXZG9+7q/HPPOZZbrWTXro4CS3NAueUW9fx///P+2oykZk3NW9rRzrx51fU7I9QE4Bt2jz8DcDTD+VAUgACwFcB+F+cKAmB8fDwTEhIcDlvg3OeeU+/UX38F7m4RBEEQhBBHW3IdO1Yvq1dPlX38cdbtz58nH3rIURQ9+qjzuvfco86PGeO8H23mMTKSvHnT0ZZghvQ9eVK/tvh48q679Od166o6iYmJmTRIfHx8SAnAD9L/5ofa+zfD7lwx6HsDjcIoAbgYwDkX5wpCvcCZDlvWhZ9/Vu/Uq68G7QYSBEEQhFBDE1jTpullmlAbN859W4tFD+wMkPXrq79VqjivX768Or9okfPzGzaofXX2+YG1rCDBzAC5cKGyoUgRNdtnH56mRw9VJy4uzqkOQQgJwI5Qsfn+htpXVwlAGahQLycADDd4PKME4Hao4NbOyHoG0Golb71VhRN3NVcrCGHOzZs3eerUKe7atYsbN27MFFxaEAQhI7ffroTM7Nk3GRcXx+TkZLZp434pV+Onn3QhtGSJLoxMpsxp5G7e1Pf3/fyz6z6TkhyDKj/2mGrz8su+X6M3pKSovY+XLullTz6pbOjSRS/TnGe0KHPhMAMIANUBPA4l/ACgFpT3bW8APQ0ey50ALA2gGoAIu7LiTuo9nN7HJBdjuN8DqKFtUHCSAksQXHHq1ClWr16dhQsXtqWO0478+fOzWrVq3LFjB0ly5cqVvP32220p0OyPkiVLso2fs9J06dLFYUxnOXgFQRDsKV1aEzLXqH2XainYhgxx37ZvX1Xv/vvV84sXHQM923P4sPu0aa7o10+16d3bm6vyHc1RpUkTNV9kteqv0cyZej2Lhfz3X+cZQDRCbQ9goBgIYASU44YVwNL05yMAFEivsyD9XEW7dvuhlntfA/AsgJkAbkJlFXEVq9AzAbh/v3oHe/Uy5i4Rch0ffvihLQfuSy+95LJeSkoKO3XqZKu7fPnygNl47tw5Nm3alGazWQSgIAhZkj+/+mpcvvyqTQBqM14ZnTXsuX5dhUNRs4d6edmyzp027DN8ZEgx7pbXXlPtOnTw7rp84fp1PVUdQE6eTP79t/7c2zTkwRCAnQAshwqpEh2oQTNwGMpz19mhCb75ANLgKABHA9gBFZcwOb2fj+E+ULVnApAkGzVSGwyuXvXt7hByNRs3brSJuoULF7qtO2rUKFvdo0ePBshCxdtvvy0CUBCELLFY1HKtWhzTBaDmN/nkk67bLlmi6kRFqZk/jdatVfkbbzjW1/bRVarknY1jxqh2zZp5184X7MPRaB6+L7ygHleu7H1/wZoBrAYVQ28HgIUA2sKzrBrhiOcCUMt6HWx/ciEsCRcBqI0tAlAQBHfY5+b95ZckmwAcMkSV2TtjZOSRR/SMHfa8/LIqb9/esXz0aFXevLl3NmrBo++4w7t2vtCokRqra1flNmAvBt3NhroiFJaA7wYwBcCfULNpTYJliJ/wXACePUvmyUP6eS+WkDMRASgIQk7i9Gld4Pz11xWbANS2zLv6qtSyrALkN984nps9W5XfeqtjubaXz9tdWF99pdqVLetdO2/ZsUN/LbZtc3RwAcilS73vMxQEoIYZQCuoVHA7AbwPoGZQLTIGzwUgqX62mM3kqVPev5tCrkYEoCAI3rJ5MzlggJp/8CdWK/nrr5m9b91x4IB9NgtdAI4bp8ruucd5O21WrnBhlWvBnq1b9T7td1tpS8P2Aac94fvv9eVYf6IJ1Lvu0h07BgzQs5NcuOB9n6EkAO2JBtAZwNdQOYBfB1AhqBb5jncC8Ouv1Ts6YYL376aQqwlFAbhhwwZOmzaNkydP5s50tztnAvD69euMj4/nypUrOWfOHNJsUtoAACAASURBVC5Oz/F09uxZzpw5k7NmzeK1a9ecjpGamsq1a9dy4sSJnDFjBrdu3eq36xGEnEbTpuor54MP/DvOxIlqnBde8LzNzp32Yi2NCQkJTEtL48cfOwY5zogWJ/DZZzOfu3RJ73P7dr1cyy4ya5Z31/Xbb3p/GcWmUVy8qARmRoeWK1fIPn2UM4gvhKoAtKcggD4AvgewAcAAAEWDapF3eCcAb9xQyQXr1PHtHRVyLUYIwBkzZrBcuXIO4VpKlSrFlStX2upMnTqVERERtvNlypTh6QzJNTdt2sQaNWqwWbNmnDZtGr/88kv26tWLTz75JIcPH55JAG7ZsoUxMTG2Plu3bs29e/fy7rvv5nvvvceYmBg2btw403V8++23rFChAnv06MFFixZxxowZbNasGRs3bsw9e/b4+lIKQq5B84p95hn/jWG16gKrTBn3oUns2bxZ98y1bzNvniq//XbH+rt36165gGrvDC3g84IFun0xMars+++9uzb7WUpXOYazy9Spqv9ChYz1EQ0HAWhPKQAvAdgCYBWAHgDyBdWirPFOAJJk//7q3f77b+PeaSHHY+QM4MSJE2kymVihQgWn7WfOnMmIiAjOnz8/07lvvvmG0dHRfPrppzOdmzNnDvPmzevSC/jjjz+2CcAHH3yQp06d4oYNG2y2nj9/3lZ33rx5jIiI4FdffZWpnyFDhrBo0aK2GIiCIGTm5k3dy/a++/w3jv3+NUBFPfOENWt04WPP4sWO++6OHNEdJLSjbl3lReyMtm1VnddeU88TE/V2e/d6d23nzult/fWbU8tgMniwsf2GmwC05zYAbwP4NtiGZIH3AlD72aPdnYLgAfYCsFKlSqxXr57To27duixdurRbAZicnMwiRYrQbDbz0KFDmc6vXbuWPXv2zFR+4sQJFi5cmAULFuRVFz9VW7du7VIAHjx4kCaTicWKFbOlSrx69Srvu+8+B0H5zz//MG/evHzURVLPtLQ03nLLLaxevTqT/bUuIwhhzrFjungpX95/49jPygHknDmetdOEXkbbVq92FIZduuh9V6+uUsTZ/VbMxNChqu7DD6vnn36qh4zxZo8iqYIx657K3rX1hKtX9QwlGzYY23c4C8BwwXsBaLGQt9wiqeEErzB6D+CAAQNoNpv5tpN8S7179+ZmJ+srQ4YMoclkYi83rnRPP/20SwF45MgRm11//vmnyz569uxJs9nMBdoajhMGDhxIs9nMTz/91GUdQcjN2DtEAN6LH0+wWMgKFVT/mmeuJ562169f58yZuqizZ8MGVZ4nj7I5Xz71/JNPPFte1paQK1ZUqdUqVlTPn3/ep0u0BZxevdq39u7QAlSbzSosjpGEmwBsFGwDfMB7AUiSb72l3vUffzT2HRdyLEYLwG3bttFkMrFShsioV69eZR0Xe1TLly9Ps9nMKVOmuBzbEwEYFRXFNBc/fm7evMn8+fPTbDZzy5YtLseZNGkSTSYT7733Xpd1BCE3owVL1o7du40f4+ef9f61mcCKFV3Xt1qtfOutt1i7dh3eccclApmzbNg7XtgHfPb0a3bbNr39hAm6OPUmBZw9lSr5L4Sv5vHsD7eAcBOA8cE2wAd8E4D79ql3PVAJBoWwxx9ewDVr1qTZbOaPdj9E5s+fz3fffTdT3WvXrtn6XLJkics+PRGAZcqUcdl+9+7dtnH+drNPdvbs2TSZTCxSpIjLOoKQm5k0yVEA2vl6GYaWqaJJE3LXLn2sI0cy101LS+Ozzz5LAKxY8W4CZxkRQf71lzqneQHv3q3306GD43KuJ9gHmNacPwYM8P0a69ZVfXz0ke99uKJjR98DPWdFqAnAfADeBbAWwE8Zjp+hUrOFG74JQFLtas2b1/1mBkFIxx8CcPz48TSZTHzSLufSAw88wGNOfiqfOXPG1ueqVatc9umJALw1Y5RWO3799VePBODMmTNt9SyudoMLQi5Gy6ihHZMmGdt/aipZooQujiwWslgx9dz+I2rZMvKtt26wffvOBMDmzVuzQIEkAqSW1lwTK5cvX+aRI7rNefJ4t69QQ5u102b/shMNq0UL1Y/RoU2tVrJ0adW3E3+7bBNqAnAhgLMAfoEK+WJ/bEFuE4CLFql3ftw44995IcfhDwF4+vRp5smTh7Gxsbxy5QoPHz7M1q1bu6wfHR1Ns9nMr7/+2mWd7ArAo0eP2mx3F/Pvvffeo8lkYunSpV3WEYTczOOPOwrAgQON7f+77/T9a//9p8o6dVJlffuq53//TZpMlwm0IAA2afIEu3dPIaDEz6VLqp69ADx71tFus5k8c8Y72x5+WG+f3dm1zp1VPy+/nL1+MmIvdL31TvaEUBOAKwFEuDn/S6AMMRDfBWBKigqaVL688tcXBDf4KxB0+/btaTabOWvWLI4aNYqLFi1yWbdly5Y0m82c7CYyaXYFoNVqZcWKFWk2m/nll1+6rDdw4ECaTCY+ljEZqCAIJPUg0NHR6u+DDxrb/9NPq35btdLLJk9WZVWqqBmuZs3+I1AvXYi8SMBiEz32HzX2AvD6dUcBeP/93tum7UeMjHS+HO0Nzzzjnx1bWpq5woVdh7TJDqEmAD/I4nzTgFhhLL4LQJJ8/311B7j5ohME0n8CcOnSpTSZTGzSpAnr1avHGzduuKz7xRdf0GQy8ZFHHnFZ54knnsiWACT12b3BbgJjVa9enWazmevWrXPblyDkdKxWFeA447+6tgx63326KDOK1FSySJHM2Svss3u8++4hArcRALt0Gc3HH7fazjVv7ujRay8ArVY9fqGve+/++ossV44cOzb71/rqq8oONx97PvHyy6rftm2N7Vcj1ATgCADF3ZwfHShDDCR7AvDsWbVLtVEjY995IcfhLwF48+ZNFi9enGazmf369cvSjvvvv5+RkZH8448/Mp1LSEiwLRMPGTIk03lPBWBycjJr167NEiVKOASH1ti1axdNJpPTWIWCkNtYv14Jidq19TKLRd8/Fxen76dLTTVmTC18icmkAi1rpKWp+H3AXwRKEzCxdu0ZtvOrV5ODBpHHjzv2Zy8ASTJ/fl0A+uq9axRjxig7jA440Lix/v74g1ATgDEAxgHoDqAqgIp2x20A/g2eaT6TPQFI6plBJMep4AbNYcNsNnPQoEEuHR9u3LjBjh072uouXbo0y74HDx6c5Z47jXPnzrFhw4asUKECt23bZitft24d77nnHrZu3doW7Pm9997jTz/9ZKvz008/0WQysUCBAjySxbrMiRMn2KBBA95///0OTin79u1jnTp12LVrV173R2AzQQgzRozQxdKVK6rs9Gm97Kef9MdO4r77hOZg0qRJ5nONGv1IoBCBKEZEfM0DB7LuL6MALFVK9d+woTH2ZocZM5Qtd95pXJ/JySq0DUCuXWtcv/aEmgBsDOAIAIubI9zIvgDUfN4ff9y4d17IEZw6dYo1atSwZe2wP/Lnz88aNWrY0qGtXLmSVatWZUxMTKa6pUqVYls36wzbtm1j1apVPbYrJSWFU6ZMYd26dXnnnXeyQYMGfPXVV3n58mX269ePpUuXZq1atfjAAw9w2rRp/P3331m1alVGRUXZbIqIiGDlypXdBnJOSUnhp59+ysaNG7NOnTps2LAhW7duzeXLl3v+IgpCDqdNG13g/fqrKtu+XS+7elXfB2jEjgmrlbztNtWf/RKr1Wrl1KlTaTZHEChI4Ee++qpnfSYnJzMuLs6W2ad69cz9Bwttr165csb1GR+vvz/+CgQSagLwVwBTAfQH0DvD0R/AueCZ5jPZF4Ck+g+OiMier7og+MiCBQs4ZsyYYJshCIKXWK1k0aK6mJg1S5V/8416XqyYel6jhno+Y4brvjxlz57MwaWTk5P5zDPPEABvuaUqIyL2slw53cvXW5YtU04X2f1qNYLvv1fXmi+fcX1OmaL6rFbNuD4zEmoCcGoW5xcHxApjMUYArl2rh1IXhADTokULnjhxIthmCILgJQcPOnrMDhqkyj/+2DHDRPv26vnQodkfU8tecdttSoD+999/bNq0KQGwbdu2vHjxIvfu1UPDhDv2mUlSUozps1s31Z9dCnTDCTUB+H4W50sFxApjMUYAWixqzrtQIeMTAgpCOrt372atWrX43nvv2cr27t3r1qtXEITQ5csvnYdMeeMN9bxdO/X8pZfU844ds+4zOVnl4z171vl5LbzMK6+Qv//+O8uXL08AHDp0qMsUj+HMgQP662uUqL3lFtWfP1OZh5oAbAWgj5vzmwNliIEYIwBJdScA5LRp2e9LEJwwYcIEmkwmVq5c2VbWvXt3bt++PYhWCYLgK5ozhubxW6yYmpXr2dMxCLI2I+iJI0O/fnoA5nvuUfvwNK/dxEQ9RMvbb3/JmJgYRkdHZxmZIJw5d87YgM32AaCdBFMwjFATgCMArAKwG8DnAObZHZ8BSA6eaT5jnAC8dk0FVrr9dv9EhRRyPfHx8YyMjOSc9LxKEyZM4DPPPBNkqwRB8JXmzZWQ0LJVAOSpU3rsPy2t95o1+j42Lf7ejh1qCdmeY8d0MWl/FCig0pXNnUsCaYyOHkYALFOmjEM0gJxIWpr+OhgRrENbQi9f3r9f9aEmAM8CuALgsJPjBHKrF7A9w4apO8NNrlVByA5z5sxh3bp1eccdd3DYsGGSR1cQwpS0NDI2Vn1lLF2qhxX5/nvdS1fLMbtvn6NAXLVKPS5Y0DEm39ChqrxCBfLHH9Uyr5avFiBjY88RaEMAbNiwIU+ePBmUaw80BQuq6/+//8t+X3XqqL489ZD2lVATgH8DKOrm/O+BMsRAjBWAx4+rn18tWxrTnyAIgpAjSUjQhdnJk7qwmDBBD/vyww+qbkqKWtIFyM8/d/Qc1vYFXrqkZvoAcuJEfZyLF8levUjgdwKVCIAPPNDfbdYgb0lKSmLNmjWZFKJ74LWsKm4yZXqEFvUNUFlT/EmoCcCOWZwfFBArjMVYAUiS3buru+Ovv4zrUxAEQchRzJ+vvirKlFHPn3xSPdc8fgEVskVDczzIl0/9tc+2sXw5+cEH6nGhQnpAaY05c+YwMjKaQDQLF55jeHiWjIGgQ426ddVr8/HH2evnrbf08C/2qfD8QagJwI+zOP9bQKwwFuMF4LZt6g7p29e4PgVBEIQcxQsvOOao1faWaQIPcBRyLVvq5WazyhDy6KPqedmy6gDUTiSNGzdusH///gTAihUrcuvW7TRw4s9GqAvAdu2yH0bHaiUrV1b9jBplnG2uCDUBeBlArJNyM1SKONkDqNG0qZrDt0+yKAiCIAjp3H23o6PH//2fo+NGwYKO9Z97Tj+nCZBjxxxnAqOi1B5Bkjx69CgbNGhAAGzdujXPuooLYwChLgC1vZFaWB1f0OZ2ALUn09+EmgC0Apieoawm1MyfFSIAdZYs0fzsje1XEARBCHtSUnSnj+++U2XHjjkKwJo1Hdt8/rkqb91aOZBoTJ2qt9EWnn744QcWK1aMADhixAi/x/cLdQE4e7Ye/NpTkpNVyjdtW6MWi7F+ff/YmJFQE4DHAEwA8DIAE4DhUKFfNgOoDeDT4JnmM/4RgKmpKhxMgQLkmTPG9i0IgiCENfa5fs+dU2VWq9q/p5W3aePYxmpVjiOpqY7laWmqbtGi5D//pHHUqFE0mUwsWLAgv/3224BcT6gLwJ9/1pfOPV0Cf/11zXNapbUrVUp30gkEoSYANQYA2AvgGoAhUGIwXPGPACTJxYvV3fLyy8b3LQiCIIQdFgu5f7/6WgDUnjJ7mjXLPJvnab+JiWfYpo0K8VKnTh0eOHDAWOPdEOpewPbBoP/+27M2t9+eOZ6iyeQYdsefhKoABICRUOLPnp+CYUg28Z8AtFjUXHFUlAodLgiCIORaJkzQw7RoR7dujnUGDNDPjRzped9btmxhuXLlCID9+/fn9evXjTU+B1C8uHpdlyzJuu7p047vw/33q8fdu/vfTo1gCsBXoESeu+MQgGEABgMYCuBSoI00AP8JQFIFcQLU/LEgCIKQ41izRjkXuPud/9dfjsKvSBG1ly/jbNQnn+h1Zs3Kemyr1cqJEycyT548zJcvHz/77LPsXUwORptdfeedrOsuXaqH2tGW3K9dC2ySr2AKwL0ArsJ51g9nx3GIE4hzWrZU88a7dvlvDEEQBCHgJCXpM0vuMkN07Kjq1K6thKKrGHKbN+sCcM0a92NfvHiRnTp1IgBWr16dCQkJvl9ILkDLkezJLJ7m8JFxH2YgCaYA3AKgkpdtJBOIM377zTHYkyAIgpAj0GL3AeSDDzqvY+/wsXKl+/4uXiQjI7MONbJjxw5WrlyZANi9e/eQ3XsXSkycqF7XevWyrnvXXaru6NH+t8sVwRSAj/rQ5hHDrfA//heAJNmli7qbfvnFv+MIgiAIAeHKFbJYMV3clS/vvN6DD6rzDRt6lj1i+XJyzhzn56xWK6dOncrIyEhGRUVx+vTptPo7JUUOQYuzmDev+6XcK1f0tHsbNgTMvEwESwDmC9G+/EFgBOA//5AREeS99/o/f4wgCILgd8aM0UOLaCLw4kXHOlr4EYBcty57450/f54dO3YkAFapUoU7duzIXoe5jEOH9PfC3X7N779XdSIj1b6/YBEsAbjVwL5CPT1cYAQgSfbvr+6q1av9P5YgCILgNy5fVnH3tPRiJpN6vGWLXsdqJe+7T5U3b5693/5bt25lxYoVCYDdunULuXh7ycnJjIuLY3JycrBNcUlaGhkT4xh82xlavt/GjQNnmzOCJQB/A1DRgKMSgJ1ejh0L4B0AawGch8ow8pQX7QsBmAXgDJQTy08A6rmpHzgBeOKEuvtq1QqsK5EgCIJgKO+/r6drO39ejxk3Y4ZeZ9cufcZp0ybfxrFYLBw3bhwjIiKYN29ezp49OySXfEM9ELRG7drq/Zg82XUdLeTLa68Fzi5nBEsATgQw36BjopdjV4ISfYcBrIfyLPZUAJoA/ALgCoC3ADwPYBdUDuPbXLQJnAAkyTfeUHfW//4XmPEEQRAEQzl3ToVxsc/22amTej5woF5v2jRVduutvo2TmJjItm3bEgBr1qzJXSEcSSJcBODjj6v35LnnnJ9PSdFnCbNy2PE3oRwI2l9EAiiZ/rg+vJsBfDy9fie7suIALgBY5KJNYAXghQtk4cLkLbeoO00QBEEIK7RgzcWKqY90UglBQC35ajzxhCp76invx/jxxx9ZpkwZAmDfvn159epVQ2z3F+EiAEeOzPw+2bN1a+YUfcEiNwpAe7wVgIsBnHJS/imAJChxmZHACkBSjxvw0UeBG1MQBEHINjt36vv9Pv1UL9cyfxYrpvb6Wa1kmTKqbPZsz/tPSUnha6+9RpPJxPz58/N/YbJaFC4C8Msv1XtSsqTz8+PHq/N33BFYu5whAtA7AbgfwGon5X2hlpLvcHIu8ALw2jWybFmyRAnlby4IgiCEPFYr2bSpEgh33aWcCjT27NFnjk6dIg8e1J//849n/e/bt4/169cnADZq1IgHDx70z4X4gXARgH/8ob8v589nPt+hg/sl4kAiAtA7AZgEYLaT8oegBGBrJ+cCLwBJleMHUOHGBUEQhJDns8908ZAxpOvNmyrtuxbuZf58faYpK58Nq9XKuXPnMl++fDSZTBwxYgRv3rzpt+vwB+EiAK9d02dwt251PGex6Hs7Fy0Kjn32iAD0TgCmAZjmpLxFej/OAlUHRwBaLOQ996g70T5ugCAIghByXL5Mli6txEGvXs7raB6mkyaRffuqx4895r7fCxcusGvXrgTA8uXLc+PGjcYbbzT796ukxXakpaUxISGBafbToiHKLbeo92bePMdy+9nB48eDY5s9IgADNAMYHx/PhIQEhyMxMdG/7+4//5DR0WS1auSNG/4dSxAEQfCZV19VwqBAAbXE64wePVSdvn31sDBTprjuc9OmTaxQoQIBsEuXLjzvbE0ylEhNVXvYY2JU9Ot//w22RT6hZWbJGOZl0iRVXqVK4G1KTEzMpEHi4+NDTgC2BNAmQGMFbA+gsyMuLs7/77rmEDJ8uP/HEgRBENxy+bJy9LBftt27l8yTR31UT5jguq2WGUSbYQJIZ8k6rl+/zqFDh9JkMjFfvnycM2dOSMb2c2DnTpVEFyCrViU3bw62RT7z8svqMtq2dSzX9v/17x94m+Li4pzqEISAAIwC0A9APIDpAGYA2A7gWQAxfhzXWwG4BM69gGchCy/goMwAkuoXVf36Kk2cpPURBEEIGnv2kOXKKRHw8su6N2/r1qqsenX30btWrdKFnzZbmHFF9LfffmP16tUJgI0bN+a+ffv8e1HZ5fp1ctgw9R0VEUG++WbYr1gtW6ben6goJfhJ9T4VKqTKv/gi8DaF4gxgaQDvAdgB4HUARezOFQEwDMCfAN4HUMYP47sTgKUBVAMQYVf2ONRMX2e7Mi0O4OcuxgjOHkB7/vxT/bysXVtiAwqCIASB7dtVCBd7Affss+TSpZ7n8j182LH9gw/q51JSUvjWW28xIiKCUVFRHDduXOjvl9u0SV/LvusutUkuB3D9Ohkb65iTYft2Ry/uUCBYewDrAfgfgI1QoirCTd0IAN0A/AwlshoYMP5AACOgZhutAJamPx8BoEB6nQXp5yratTND5TG+DOBt6JlALgG43cVYwReApB6dcvTo4NohCIKQy9i4Uc3WASp2X+/euhjQln47dcq6H4uFzJ9fb/v++6r8r7/+Yp06dQiA9erV499//+3X68k2ly7p0a5jYlRwvNTUYFtlKN27q8vr0EE91+L/Va8eXLvsCaQANAF4DCp37ucAGvnQR2MAXwLYAKBLep++cBhqJs/ZoQm++VBevxUztLXPBZwElU4uNHIBuyMlRUWejIwkExKCa4sgCEIu4dgxMl8+PWXboUNq2ffNN3UhFxOjZvc8oVEjvd1PP6VyzJgxjIyMZEREBEeOHMmUUF7lsVpV/JNSpdQF3H8/eeCAR03DyQuYJJcv15eBL10iH3pIPX/++WBbphMoATgYapl3DIByBvRXHsA4ADuhZvNCmdAQgCS5bZvyrGrYMPPGEUEQBMFwnn1WffGXL0+ePOl47oMPyKJFyRkzPO/vmWdUf5GRm1mnTl0CKo/v9u3bjTXcaHbvVoIPIIsXVzFSvHBMCZc4gBrXr+uztXPn6o+XLAm2ZTqBEoAdAeT1Q7/54JiXNxQJHQFI6rEG3LmaCYIgCNnm0CF9iddVujZvnXM//PAEgR4EwKioKA4fPpw3QtlpIimJfP119UKYTCoFhg/haMJNAJJ62J6KFfVZ20D4fnpKbo8DGAhCSwBeu6aCEMXEqGCbgiAIOYxVq8hffw22Ffpev9tuU5k8skNycjLHjh3L2NhYAmCrVu24P5Q/w61W5Q5boYLu5LFtm8/dhaMAXLHC0WknFPL/2iMC0P+ElgAklecVQN57rywFC4KQo/jrL/Xxli8feeFC8OzYu1ftuLH3BPWV1atXs0qVKgTAKlWqcPXq1cYY6S/++Uff9FaoEDltWra/a8JRAN64oTv/AOSLLwbbIkeCJQDLQDlx1LIrqwTlGJI/kIYEgNATgCQ5aJC6I994I9iWCIIgGMbUqfoX7oIFxve/caOKWZwVTzyhbKhRw3ft888//7Bdu3YEwNjYWI4dO5bJycm+dRYILlxQAQ61de8nnyT/+8+QrsNRAJJkz576/bhsWbCtcSQYArA5gGtQIVbSAHyQXh4NtVfQEihDAkRoCsDkZLJxY3VXLl4cbGsEQRAMQQu/AZDt2hnXr9VKjhql9928uVpqPnOGnDOHfPhh5dBRrJie09fXTf+JiYl8/vnnGRERQQDs0aMHT5w4YdzFGE1qqsrdqwU6bNiQ3LrV0CHCVQB++616Scxm8ty5YFvjSDAE4Dqo2b8CAGoC+AzAh+nnSkMJw5xEaApAkjxxQrnj58tHhnrcKEEQBA+wT5MWGUlevJj9Pq1WcsQIx/1cnhx33aVi93nKtWvX+N577zF//vwEwKZNm3KrwULKcH74gbzzTnXBZcuSn33m3UV7SHJyMuPi4kJ7BtQJFgv53nvqZQk1giEARzkp6wugD4BSkBnAwPLzz2q6/rbbgrthRhAEIZucPq2LL5NJ/fXlizclhfz9d5W94Y8/9OAJANmrl1oG1vK6AmThwuRTT5FffUWuXKmyeyxerGYHPSEtLY3z5s1juXLlbPv8li1bFtr5e/ft01+EmBjy7beVx68QNgRDAA5J/1s5Q3k7KCEoAjDQTJum/okfekicQgRBCFs0r8vYWLJrV8dMDJ7y++96drKMR58+jh+RBw6QW7b4nmHTarXy+++/Z+3atQmAxYoV40cffRTawZxPn1bRjCMi1IvyxBPkkSPBtkrwgWAIwIZQAaEtUJk97LkPwJVAGRIgQl8AWq3k00+rf+a33gq2NYIgCD4xbJieYGLZMsdMDFlhsZAffqiWjTMKv4gIcvBgY1c24+Pj2aJFCwJgTEwMhw0bxkueGBosLl9Ws3xaWpOmTZX6FcKWYHkB54WjB7A9twbSkAAQ+gKQVP7qDRqof+xvvgm2NYIgCJlISHAfSk5LNDFsmMrEEBurni9a5L5fi4Xs2FEXfLVrq7FSUlTo1OvXjbuGPXv2sFOnTgRAs9nMPn368OjRo8YNYDTJycq1unhx3a15xQrvI1gLIYfEAfQ/4SEASfLoUfVPXqAAuWdPsK0RBEGwcekSWbCg2rLsLJ15aqo+ObVihSrTQrE8+qj7vtet08Xf4MHq97DRHD16lH369KHZbCYAdu7cmXtC+XPWYiE//1wlMAbIcuWUu3NqarAtEwwiVARg12AO7mfCRwCS5E8/qfWOatU8WzcRBEEIAF99pYu0117LfP6PP/TzWui5pUvV8+hotYLpisceU/Vatzbe7jNnzvCVV15hVFQUAbBFixaMj483fiCjsFrJ5cvJWrX0QM7jxqmpIptgfQAAIABJREFUUCFHESoCcHwwB/cz4SUASXLyZPWP36aNf34KC4IgeImWV1WLNpLRX23GDHXu1lv1smvX9FnBadOc93v6tB63eOlS4+y9cOECR4wYYQvpUr9+fa5bty50PXutVuXCXK+enkrltdd8ytvrD5KSklizZk0miaexYYSKAPww6yphS/gJQKuV7NdPj6QaZnGXBEHIWdy8qUKt2Dtm/PCDYx0t72737o7lWtKj8uWdf5SNGaPOlyqV/Xy9pPpSHT16NAsVKkQArFGjBpcsWUKLH2LjGYLVSq5Zo+8Bj4khhwwxLIOHUYRrIOhQJlQEoMwAhhoWi/6J+sgjvsc5EARByCY//aRnU9AmqHr3dqxTrZoqnzrVsfzECeUJDKhZQnssFn2L2/Dh2bPx6tWrHDduHIsWLWqL5fe///2PaaEaWstqVZsftYxQUVFKLZ86FWzLnCIC0HhEAPqf8BSApFpjefJJ9eHQqZMxP48FQRC85OWX1cdQs2bkvHnqcf78+ra08+f1mUFnXsIDB6pzFSs6/pb97ju93b//+mbb9evXOXnyZJYsWZIAWKlSJc6dO5epoeosYbEoL5mGDfV0Kc8/Tx4/HmzL3CIC0HhEAPqf8BWApBKBWnLNLl3EA0wQhIBiteqzdOPHK2eOmBj1/PPPVZ1Vq3RnD2eLFceO6fH9Zs7Uyzt10rc7e8ulS5c4ZswYlihRggBYtmxZTp8+PXSDOKemqhdMS9sWHa2EX5gEcRYBaDwiAP1PeAtAUn1waGH1u3UTESgIQsDYtUufpfvnH1XWrZt6/uCD5Pz5ylEVIO+5x3U/AwaoOpUqqfjFkybpySyWLfPcnv/++4/Dhg1jwYIFCYAVKlTg1KlTed3IYIFGkpxMzpql0n1qaVJefTVkl3pdIQLQeEJFAIoTSKhz8ybZubP6AOnZU1LGCYIQEN5/X33sVK2ql/3f/2XO1lG6tPsg0UePOs/yUaaMZ7tbDh8+zBdeeIExMTEEwOrVq3P+/PmhO+N35YpSueXKqQstUoSMiyPPnQu2ZT4hXsDGEyoC8PlgDu5ncoYAJNXayqOPqg+Tp54SESgIgt9p1Eh95Lz6ql6WmkqWLKmLuKee8ixayUsv6W2qV1ftfv3VfZs///yTvXr1YkREBAGwQYMGXLZsWeh69R47pl6sggV19+bx45UgFAQ7QkUA5mRyjgAklQhs314Pry8fKoIg+Ilt23TBtnmz47lly9TevZUrPe8vNZX888+sY9xbLBauXLnSlqsX6QGcQzqO386danVGC2pYowY5e7bEchVcIgLQ/+QsAUiqPSWaY8idd/ruPicIgpABq1U5dbRooYu/kiUDs/X46tWrnDZtGm+//XYCYJ48edizZ0/+/vvv/h/cFywWcvVqxxfrgQfUGnmozlAKIUOoCcACABoCqBxsQwwk5wlAUn1KjxtHmkxksWLkhg3BtkgQhByAFrhZO+66i/zlF/+OeezYMb7++ussXLgwAbBIkSIcPnw4T5w44d+BfeXSJRXwsGpV9SLlyaNCdu3cGWzLhDAi1ATgaQAWAFsBTAPwLoB2AEzBNCqb5EwBqLFqFVmggPoAmj492NYIgpBNgrnCuXChLvwefpjcuNF/9litVm7cuJGPPfaYbX9f1apVOX36dF69etU/g2aX3btV6JbYWPUiFS1Kvv56yMfwE0KTUBOATwPok6GsJYBJAO4LuDXGkLMFIKk+lLQQAwMGSNYQQQhTEhKUN+3Ikf4fKzFRHRp//KHH9+vUyX/C7+rVq5w1axZr1apl29/Xtm1brl69OjQdO1JTyW++UUu7mjquW5ecO5cM1dAzQlgQagLQHX0BPBpsI3wg5wtAUrngtWypPpzuu488cybYFgmC4CUjR+qhUfzJgQPKSdVsJtu2JT/7jKxcWQ/34o+Py0OHDnHo0KG2Zd4CBQpw8ODB/EcLLhhqnDxJvvuuSl+iLfN266aCGIaqI4ofSU5OZlxcHJMlN71hhJMABICJwTbAB3KHACTVL9XBg/Voq7IvUBDCCs3BH/BvuDgtA0fGIzZWzUIaRVpaGletWsV27drRZDLZ4vdNmzaNV0IxgkFamnLgePRRPUp16dIqft/Jk8G2LqhIIGjjCTUB+ASAPwEsAfAwAHOG858E3KLsk3sEoMacOWTevOrD68UXSQncKQhhQdmyuhjbuNE/Y2zcqI/xzjtqUis6Ws0GLl5szBinTp3iu+++ywoVKhAAzWYzH3nkkdAN43LiBDl6tD7bZzKRDz2kln4lBztJEYD+INQE4CoAgwGsAZAG4DyAZQDGAfgs/XG4kfsEIKnWeO69V32Y3XqrzAYKQohz+rTjbNy0ad73YbWqyas6dZzPIFosyqsXIO+/X1/JvHgx+ylpLRYLf/jhBz722GPMkycPAbBMmTIcOXIkjx07lr3O/UFKigpm2KGDUr+AUuBvvx02+XkDiQhA4wk1ATgN+qxfOQDDAfwAYA+ArwCUCZJd2SF3CkBSfdpPnarPBg4cKLOBghCirFnjKAAHDPC+jx9+0NuPHp35vOblazKRO3Zk32ZSzfaNHTuWVapUsTl1tGnThsuXL+fNUJs9s1rVhQ8apMJnAUr8Pfww+e23kmfdDSIAjSfUBGBVADMBdAAQEWRbjCL3CkCNAwfI5s1lNlAQQpj33nMUgM2aed+HlilS27pmHxDg6lU9Le3TT2fP1pSUFC5fvpzt27e3hXApXrw4X3/9dR44cCB7nfuD06fJCRNU4HztBapRg/zgg1y/t89TRAAaT6gJQEDNAD6I8Jztc4YIQFLNBn70EZkvn/rw69dP7XsRBCEk6NxZ9wAGyMKFvXM2PXxYX8nUjv/9Tz//xhuqLF8+3//1d+/ezaFDh7JEiRK2vX3t2rXjsmXLmBJq4aeSkshFi9TsnubQUbiwiuO3bVuu9OTNDiIAjScUBWBOQwSgPQcPqs0/gAr69eqr5NmzwbZKEHI9t9yi/i1ffVUXcN7EF9YEXqVKKiUtQDZooHROfLwuDseM8c6u8+fPc/r06WzUqJFtibdKlSocM2ZM6GXquHlTBcfv3l3/sRsRoUTgkiWSlzcbpKWlMSEhgWlpacE2JccQKAG4AsAgALEG9lkAwND0vkMZEYAZsVpVqIM6ddQHZIEC5KhR/gn+JQhClpw/r4u+bdv0gMxr1+p1fv+dnDTJuVPqjRv6lrYPPlDb3LT+1q9Xq52aIPRkm1tKSgpXrFjBzp07MzIykgCYL18+PvXUU9y0aVNoefJaLOTPP6tNk9qLAJBNm5KffCIxUYWQJVACMBbAiwC2A5gAoFI2+roVwFSocDEvI/SnLkUAusJiUXEftHyWxYqpfTIS3V4QAsqPP+qxhpOTdU/dDz9U5y0WskIFVTZhQub2Cxbok/qa968WBKBAAfU3Korctcu1DVarldu3b+egQYNYvHhxAqDJZGLLli25cOFCJoWSA5km+gYP1jc2AmTNmuT775P//htsCwUhS4KxBNwewPdQsf7u8aJdcwDfAFgPoCMyxwgMVUQAZkVqqkprpH3DlC1LTpyoYkMIguB3xo/XM4yR5FNPqee9e6vnmzbpGue225T+0bBayfr1Mzt3LF3quB/w/fedj33o0CG+++67rF69um2Jt3r16hwzZkxohW9JS1MvxIsv6hslAZXC5I03yL/+kn19QlgRzD2AdwKYA+BnAD3g3Os3D4BeAH4FsABAPYPGjgLwAYCTAK4DiAfQyoN2cQCsTo7rbtqIAPSUGzdU2JiSJfXd4s89Z2xqAEEQMtGtm/qX69tXPdcEYf366vkLLziKue++09vaB3b+/Xe9PDVV7Qd0tvR75swZfvzxx2zSpIlN9BUvXpwDBw7kb7/9FjpLvDdvqtg2L7yg3Jq1C61ShRw+nNy5U0SfELaEghNIcQBvQy0PvwmgaPoxAsAfAEYBKGXwmF8CSIEKMN0PwBYANwE0zaJdHAALgP5QolU7nnDTRgSgt9y4odaUtGkFgGzRgly+XP0KFwTBULRdGFrwZy0mYEyMCuVSooT+HFDhXkj171i3rp4CPCPr1yt/iEOHyKSkJC5atIgPPfSQLXRLbGwse/bsyTVr1oROzL4rV5TDRo8eZKFC+mdQ1arkiBHkn3+K6BNyBKEgADUioWb7tgDYCuBpqJk6o2kINWv3il1ZNIAD6WO7QxOARb0YTwSgr1it5Nat6hskTx71IVyxIjlunISQEQSDuHxZ1zhbt6qyY8f0sunT9XjFM2fqj48eJT/9VH/+xx+Z+75+/TqXLl3KLl26MG/evATAPHnysF27dvz888959erVwF6sK06fJmfNUt66UVH6xd99twqQuGuXiL4gI17AxhNKAjBQjIea7cufoXwYlLgr56atJgCLQ3khe4IIQCM4eZIcOZIsVUpPJdCihfrQPn8+2NYJQtiyebMu4jQ9ZrWSBQvqW3K1Sfi0ND1d7Qsv6E6vzz+v95eSksJVq1axZ8+ezJ8/v82Zo3nz5vzkk094JhS8Yi0W5e48cqTjSkOePGTr1sp715sYOILfkTiAxpMbBeA6AAlOyh+AEnft3LTV9gBeSf+bBOB/AEq6aSMC0EiSk8mvv1ZRa6Oj1Yd2ZCT5yCPkV1+R164F20JBCCumTNEdWO1p2tRx39/Mmao8Y8aQIkXIU6dSuHbtWvbt25eFCxe27etr1KgRJ0+eHBrx+i5eVFEHevfW9xlrF9C9O/n55+J4FsKIADSe3CgAd0HlF85IDShR199N28FQIWi6AegEYBLUbOI/yDyjqCEC0F9cukTOn69+sWtRZmNj1Y72zz+XmUFB8IDHHlP/Ok8+6Vj+3HO6RoqI0OO1nz6tfnMByQRWsVGj3g6ir169ehw3bhz/DXYolLQ08rfflGK99159GwlA1qpFDhumQrlI/t2wQASg8eRGAXgQwGon5bdCCcDBXvbXPb3d6y7OiwAMBKdPq1RzjRvrH/Jms0poOm6c7OERBCds26b/u3zxheO5jz/Wzz34oCq7fv06v/nmG1aq1JNAAZvoq1+/PseOHcv9+/cH/iLsOX6cnDePfOIJx6DM+fKR7dqRM2aozYtC2CEC0HhyowDMzgygK05BLS07oyAAxsfHMyEhweFITEwM9vufMzl5kpwzh+zYUc0Ial8ClSqpjUurVilPP0HIxVgsZKNG6l+jYUPH2H4kuWGD9q9zmQMGfMmuXbsyNjbWJvrKlm3IYcPGB3em7+JFcsUKFZC5Zk3Htem77lKzfBs2qK0jQlgjAjB7JCYmZtIg8fHxuU4AutsDaIX7PYCu2AbgdxfnCiL9AzPjERcXF+x7IueTnEx+/z05aBB5662Om73vuYeMi1PLQKESgkIQAsTChfq/Q3y847lz585x+vR5jI5uTyDK5shxzz33cOLEiTxy5EhwjL52Tf0/v/GG8tDVtn4AKjjzU0+p7R/y4zrHIQIwe8TFxTnVIchlAtCVF/CbyNoL2BWJANa6OCczgKGC1Uru2aOWih95RM9RBZD586slokmTVJyvjNMhgpCDuHJFj2usZfs4duwYp02bxpYtW9ri9EVERPC++1px+vTpPHXqVOANTUoi160j33pL7eNTmw91543OnZXH7t69ssUjh5OcnMy4uDgmy2yuT8gMoEKLAzjEriwKwH4Av9iVVQBQLUPb4k76ewHu9w7KHsBQJTVVBT4bPZps3jzzl8ujj5KTJ6sAZyIIhRzE66+TgJX58v3JV199h3fddZdtNiAqKort27fn/PnzeU5L7BsoLl5UWzT+n737jo6q6toA/mRSCKTQIfQqvQsoIEVEFFCKL4LSUYpYEEUERYw0ERWxAAoiCEhXPxALUqRLqFIioHRCC82QUELKPN8fm8mdSSYhZVqS/VvrLsmd2yYzzjw595x9RoyQ+9PWAzcCA6Uz4kcfyQwc+v+kUlmSG/sAAsBSyEwgkyF9/rbd/dl6buKNkGBn7SaAOZAi0kMALIK0Gu4G4J/KuTQAZhcxMTIFwsiR8uXj7W18+RQoIK2GU6bIfFc6clBlQ3FxcRw16g8CrxIonxT6ChQowJ49e3L58uWMdlX/WLOZPHGCXLCAfOEFsk4dqe9p/UdYx47kxx+Tu3bp/3NKOVhuDYDpmQt4A4CEZOtmQgaRRAGIBfAPgIkAAtI4lwbA7Co6mvztN/uBMChIWiPef5/culU7mSuPFRUVxSVLlrBHjx4MCDDKtfj7l+NLLw3l+vXrXTMNW2ysdDacMkVqz1jPrWvpw9e1qww/3r9fW/iUcrLcGgBdKRgAI7SqfPZnCYRvvy3lZaynjPL3J1u1IseMkT5LMTHuvlqVi508eZKff/4527RpQx8fH6vO3vcTeI/16u1jTIwT+8yZzeSxYzIgY+hQ+QPK+v8Xk0kmEX7xRdnm5Entw6eUi2kAdL5gAKxUqRLDw8Pd/XorR7p1i9y4UfoQtmkjtcasK+fefz85bBj5/ffkxYvuvlqVg0RH2zaQxcfHc8uWLRw1ahRr166dFPjy5MnDNm3as1Wrr+jtfZa4O72tw29IXLxI/vILOXaszKdbpIht617hwrJ+7Fhy7VonXIBSKqM0ADpfMO6OpsuXLx8XL17s7tdcOUtcnFTWnTJFahAm/xKsUoXs319qFOqoRZUJ165JRSNvb7JChSscPPg7PvPMsyxYsGBS6MufvyhbtuzLV1/9kSNHxjAw0HgL3n+/AybIiYyUvrLjxslAqVKlbN/nfn5SWPCVV8jvvpOWQH2vK+VxNAA6XzAArl69miEhIQTAoUOH8s6dO+5+7ZWzmc0S9GbNInv3JsuXT9kq8uSTMlPJli3k7dvuvmLlAmfPkvPnZ6z0ZEICOX26mfnz7yUwkUBTAqak0FeoUAMGB48hEEYg0eZtBsjUtzNmZLDcpdlMHj9O/vCDlGF54gmydGnbA3t7k3Xrks8/LyfYsUP7wyqniImJYY0aNRij3WscRgOg8yUNArlw4QJbtGhBAGzWrBnPnTvn7tdfudq5c+Ty5XJruFEj2zIXvr5Gy8nChfLlqy0nOUpsLFmtmrzcr79+7+2vXbvGzz5byqJF+xEIsbq1G8iyZbvQy2s2gfM2mSx/fmmUK19eJscIDU3HxDc3bkh4mz1b+uy1aEEGB9uGPR8fCXv9+pHTpsmAjlu3HPFrUeqetBC042kAdD6bUcBxcXEcPnw4AbB48eLcuHGjm98Cyq1u3pR+hBMnSiFq6/lLAbmN/MQT5PjxMrgky/fvlDtNmGDbeLZ/v+3jiYmJ3LNnDydOnMiHHnqIJpO31QCOGqxb9w3++OP6pDsIR4+SQ4aQ3bpJJjt06B5/M8THk0eOyB8h775LdulCVq5sW34FkPDXooWEwTlzpBamtuwpN9IA6HgaAJ3PbhmY5cuXMzAwkCaTicOHD+eNGzfc9BZQHsUyevK778iXX07ZSgjIlHZPPy23jteulY5hyuMdOyaDxS3d5ACyaVPy7NnznDdvHnv06MGiRYsmBT4fn0ACnQh8xZIlT3PTpgyc7M4dMjycXLaMfO89SYi1atmOxLWMxq1WTd5P48bJvLrHj2sJFuVxNAA6ngZA50u1DuDhw4fZuHFjAmCFChW4Zs0aN7wFlMe7dYvcto389FOyVy+yevWULTYVK0pttbFjyf/7P/0S9zBms5SNBMjy5W9z8uR1BEYQqGPVwgfWq1ePI0eO5MCB6wncIUD27CkTZNg96MWL5KZN5Ndfk2+8IX1Kq1SxrVlp/YdD+/bk8OHkt9+Se/boLVyVbWgAdDwNgM6XZiHohIQEfvrppwwICCAA9u3b1/XTL6nsJzqa3LxZpqrr1UtacUwm2y/8wECySRNy0CC5P7h+PXn+vPYrdLGEhAR+8MFuAh8QaEM/P3+r0FeUefL05IwZ83nhwgWS5Lp1xks55AWzvGZbtkhoGzOG7NFDWobz508Z8nx8yKpVZXTuW2/JLBt79kgfP6WyMQ2AjqcB0PnSNRPIyZMn+fjjjxMAixYtysWLF9OsX9QqI27dkmnq5syRQSatW6csRWPp39W4Mdmnj8xk8uOP5N9/a2uQg5jNZoaH/8tBg75ipUpd6e1dKCnweXv7s02bNpw0aRLXrdvDAvkTWBBX+XSlPVwz5EdeGDWVX/oP4/+hE4/lrUWzdW1J66V4cemjN3CgTJW2ahX5zz8ZHOarVPaho4AdTwOg86V7Kjiz2cyFCxeySJEiBMD27dvz1KlTLngbqBzLbCYvXJABJJ99JiMGHn5Ypt2yFyxKlCCbNZNWxXfflVanTZvIU6ekX5my68SJE/zmm2/YtWsvBgeXSgp8QQCroxYfRXe+lv8NXh32rrTItm9P1qzJOP9Au69DPLwZX64i+eijMk/uRx9JUN+/X2eZUUo5hAZA58vwXMCXL19m7969CYD+/v4cPnw4L1++7MS3gcqV/vtPSnl8+63cLnzmGZmyq2hR++HQUlCuQQPpa/bCCzKsde5cKQy8axd5+nTObkmMj+etM5d5es16/vrOO/z84Yf5dqFCfBfgNIDLAW5GXv6D/IyGf+q/Rz8/GX37yCO83Ol5rrh/HAf4zWNzbGIF0yluXBfv7meqlMrhNAA6X4YDoMWaNWtYr149aUkICuJ7773H6HsW9FLKAaKjpbVpxQqZ2WTYMBkp2rQpWbZsypHJyZfAQBl08MADUt6mRw8JjCNHSsmbadOkGvLKldI3cds2cu9eKZx96pTMNhEdLbc0M9sVwmyWsicxMeTly2REhNRNOXhQwuqWLeTq1TJSdvZs6U85dqwMkhg0SAJx27Y0N2zIO6VLMzZv3rSfM8BEePGSV1FeLFaLsS3ayMwv77xDfvWV3Kb96y/y0iW7zykqymhwVUopZ9MA6HyZDoCk1AVbsmQJ77vvPgJgkSJFOGXKFN7Kya0syvMlJsoI1N27JcR9/bX0Jxw2TIatPvooWa8eWbJkytIjmVlMJimU7e9PBgRIP8aCBaWPY8GC8nNAgDzu65tyQEwml1s+PjxjMnEvwLUAlwKcgQKcgPp8y68H94/4nOfnrWHz/PtZDBfZsH6C3qFVSmULGgCdL0sB0CI+Pp6zZ89m6dKlCYClSpXirFmzGKedvlV2EBsrLV9Hj8qo1A0bpHVx/nyZQmzKFLmdPHq0TJExZIjMONG9u5S36dxZbju3b08+9hjZpo30ZWzZUv7bpo2sb99etuvcWfbr3l2O88ILEk5HjZK6eB98IC1+X3/NmNmzuXPsWM7s04fPNWzIav7+LATQF6DJZGKDBg04aNAwFi/+I4FLLFrU6EKZPz95331G98mICHf/opVSKn00ADqfQwKgxe3btzl16tSkgSKlSpXihAkTeOnSJYccX6mcLCEhgfv37+esWbP4/PPPs0aNGlYlWcCAgAC2bt2aY8aM4W+//cbr16/z5Emyfn3jzvbu3VLUuVw5o7HQ319mUlNKqexCA6DzOTQAWkRHR3PSpEksVUpGHPr5+bFv377cvXu3Q8+jVHYWERHB77//nm+++SZbtmzJvHkDbAJfmTJl+Mwzz/CLL77gnj17GB9vDL7Yt0+6LlpqKvv6ysQrFqdPS8k9Hx9y0SI3PDmlcpHY2FiGhoYyVqckdBgNgM7nlABoERcXx2XLlrF58+ZJX2pNmzblkiVL9PawyjXMZjMjIiK4YsUKvvvuu+zQoQNDQkJswp6fXyCBhwmMYr58P3LDhnNW+8s4kC5dyPvvTzkQukIFGcORXHy8VNlRSjmXFoJ2PA2AzufUAGht79697N+/P/PkyUMALFGiBIcPH87du3drUWmVYyQmJvLo0aP8/vvvOXr0O2zXrh2LFStmE/Z8fX3ZoEEDDhw4kGPHzmb16gcJJBAwZtErU0b67N24IQN+7Y0DqVePXLxYgp5Syn00ADqeBkDnc1kAtLh8+TLff/99li9fPukL8b777uOYMWN46NAhl12HUlm1c+cNdu++nb16fcUhQ4awadOmDAwMtAl73t5+bNiwIQcNGsSZM2dy9+7djI2N5a1b5NtvGxVrvL2ltvXevWSBArKuVi2ybl0j8D39NPnJJ+T330vFFv27SSnPoAHQ8TQAOp/LA6CF2Wzm9u3bOXToUJvbYXXq1OGkSZN4/Phxl1+TUvbcvHmTe/bs4fz58/nGGyPZpMkTzJevgk3QA8BChQrx4YcfZocOwwjMJbCXwB22bi1VaUgp+/fjj1Jn2RLsatQgd+40zrdpE5knj/G4ry85a5Z7nrtS6t40ADqeBkDnc1sAtJaQkMD169dzwIABLFiwoE3L4Msvv8yff/6ZN3TCeOUkZjM5b56Z1apd4LPPbuLMmbM4fPhwPvHEE6xUqRK9vLyShT1fArUIdGeePBMI/Exv7wiuW2fmkSNkUJAEN0sJFksZliZNbGtU58kjdaftzWK3fLlsGxIidaiVUp5LA6DjaQB0Po8IgNbu3LnDn376iQMGDGCZMmWsOsn7sXXr1pw8eTL37dun/QZVhpnNZl68eJHbtm3jggUL+N5777FDh14MDGxEIDhFi56vry/Ll69Bk+lpAu8RWE7gEIE4tmhB/vKL9NG7/34JdAUKyMhbQMqwXL1K/vyz1IK27rvn6yvlAI8eTft6z58nb992ya9GKZUFGgAdTwOg83lcALRmNpt56NAhTp06lY8//jj9/f1tbre1a9eOY8eO5erVq3nt2jV3X65yM7PZzGvXrvGvv/7iypUr+fnnn3P48OHs0qUL69Spk6J/nrGUINCKBQoMJjCFXl4/c+7cozx4MD4pvNWqJROKbN4sNaOtnTtHli5t27JnXfHo5Emp8/zWW+SaNRIalVI5R0JCAsPDw5mQkODuS8kxNAA6X1IAXLJkCZs3b87g4GCaTCYmJiY67YUdNWoUa9euzeDgYJYsWZLPPvssI9IxTcGtW7f4+++/c/jw4XzwwQfp5+dn80VerVo19uvXj18t7j42AAAgAElEQVR++SX//PNPRkVFOe05KNcym828evUqDxw4wN9++43ffPMNx40bx8GDB7N9+/asWbMmg4KC7AY8b29vVqhQgU2btmGRIoMJTCbwPYG/CESzXj1y61aZEKRJE6M1z1JMuVSpe8+isW+fFGIGtL+eUkpllQZA50sKgGvWrOGSJUs4Z84cpwfAt99+m3v37mV8fDyvX7/OHj16sF69ehk+TmxsLHfs2MHPPvuMzz77LCtUSNkxv3Tp0nzsscf4+uuv85tvvmFYWJjHtnjmNomJibxy5Qr/+ecfbt68md9//z2nT5/Od999l4MHD2aXLl3YtGlTVqxY0ab1N/ni5+fHypUr85FHHuFzzz3H9957j3PnzuUff/zBY8eOMS4ujosWGQENIGvWJF97jfztN9L6j/YLFyTwWbYLCiL370/f8zl9WvvrKaWUI2gAdL4Ut4A3btxoNwCGhYWxVatWLFy4MMuXL88xY8Y4LCTu27ePJpPJIS12Fy9e5KpVqzhp0iT26tWL9evXtxseChUqxAYNGrBLly587bXX+Nlnn3HlypXcv38/r1y5wgMHErlhQ9afW3Zz5oxMRZvelyIhIYFRUVE8c+YMDxw4wM2bN/Onn37i/Pnz+fnnn3P8+PF8/fXX2a9fPz755JNs0qQJq1SpwsKFC9NkMqUa6gCZ6zYkJIR169Zl+/bt2a/fADZpEsrAwJkEfr7bghfJGjUSbVroDhwghw4l+/eXqXY7dDACXbly5PbtaT+nXbvIvHllEMaaNZn+VSqllMokDYDOl64AeOTIEQYGBnLZsmU0m808c+YM69Wrx/fff98hL/TkyZNZoUIFhxzLnoSEBB49epQrVqzgxIkT2bt3b7Zo0YJly5ZNI4T4ECjBKlXqsW3btuzVqxeHDx/OyZMnc9asWVyyZAl/+eVXhoZu5fTpB3j69Gn+999/HtMHxGw2886dO4yJieGVK1d47tw5Hj9+nH///Td3797NLVu2cO3atfzpp5+4dOlSfvvtt5w2bQZLlfqIwFhWr/4mX375Zfbv35/dunVjhw4d2KJFC9avX5+VK1dm8eLFmS9fvjQDXPLFx8eHISEhrFmzJlu0aMEuXbpwwIABHDlyJD/55BMuXLiQ69at48GDB3np0iWb9+CtW2SbNkaQ8/YmH3nEKJdSujS5ejXZp49RTDn50qkTmd6uoufOkadOOenFUUoplSYNgM6XrgA4dOhQ9ujRw+bFWbhwIStXrpz0c/ny5Wkymejl5ZViMZlMHDt2rN0Xee3atQwMDOQaNzS1REWRPXvGcceOE9ywYQPnzp3LMWPeZYkSAwh0JPAgg4IqMiAgIMNBJyAggIULF2bJkiVZsWJFVq9enfXq1WPjxo354IMPslmzZmzevDlbtWrF1q1bs02bNnzsscfYtm1bPvroo3zkkUf48MMPs2XLlmzRogUfeughNm3alI0bN2b9+vVZq1YtVqtWjZUqVWLZsmVZsmRJFilShMHBwcyTJ4+d0iVZW/LkycMiRYqwQoUKrFOnDps1a8bHH3+cTz/9NKtXf47AqwwOfo/9+3/KuXO/5YoVK7hx40bu27ePJ0+e5PXr19M1cjsujpw6lezbl/zjDynRcvs22batEeTGjTPq6m3ZYhROtl5q1yYHDjSWefO0cLJSSmUXGgCdL10BsF27dsybNy8LFiyYtOTPn5/BwcFJ20RFRfHq1aupLrft1LNYtWoVCxQowJUrVzr3nWSH2WyEikqVyBMnZP3MmbZBIiiIvHmTvHHjBk+ePMkdO3bw999/57hxy2kyfUNgKoH3WKfO6xwwYAC7devGTp068bHHHmOrVq344IMPsn79+qxevTorVqzI0qVLs2TJkgwJCWGxYsVYpEgRFipUiPnz52dgYCCDgoKYP39+FixYkIUKFWKRIkVYrFgxhoSEsESJEixTpgwrVqzIqlWrsmbNmqxXrx4bNmzIJk2asHnz5mzTpg07dOjAp556is8++yz79u3LQYMG8ZVXXuGIESM4ZswYvv/++5w6dSq//PJLfvvtt1y6dCmXL1/JYsXWEfiTwH4Cx/jkkxd4/fp1xqcx19jq1SnD16OPym3WtBpDN20in31WRsdu3CjTma1fT1avbnusOnXI5s2Nn+0NsPj7b5k6zXKLd8EC0oldWJVSyoaOAnY8DYDOl64A2L9/fz7//PMOfXG/++47FihQgGvXrnXocUkyMjKSoaGhjIyMTHO7deuMgQElSpC//moU8X3mGdLfX/793Xe2+0VEkMWKyWPBwfLfvHnJy5cd/lQyJDFRZpnIzPywH35olDD55BMjcB04YGyzbZuMlrW4do0sWVK2a9lSpiqzDm8FC5L/+x85bRq5Z4+07kVGym3a5KExf37j3z4+ZOPGKbf58svUr//qVanLFxubseftqdL7HlbKk+WW97HWAXQ8DYDOlxQAExMTGRsby99//50mk4k3b95kbGwszWYzd+3axfz583P58uWMi4tjYmIijx07xtWrV2fqhf3iiy9YsGBBbrVOEw4UHh5OAAwPD7/ntjt3koUL2waNUqXk9nCPHvJzmzbG9rdvG+GkSBHy8GFj//HjnfJ00uWPP4yCxIAUJP7+e2npvHFDWtymTyf/7//IY8dsW8iuXDEC2JtvymP16snPTz0l05cNHGgcu3178sgR4/eTP78MHiHJtWvJBg3s98Hz97cdidu0qZRdse6z17o1aZkS+sABcsAAsmxZaZnNTTLyHlbKU+WW97EGQMfTAOh8SQHw22+/TeqvZ+nLZzKZuGnTJpLkzp072bZtWxYtWpQFCxZk/fr1OSuTBc+8vLzo5+fHoKAgBgUFJd36dFQgzOiHzuHDxi1EgFy1StavWSM/e3lJiY/ERGkZtAxC+OMP2W7MGFlXvLgxc8PBg+SIEeTevQ55SinExspt1qlT5ZarddAymWzDrLd3yjAWECClUB5+2AiOhQuT//0nx1+50nbkbPL9rY85b17K6zt/Xm7F9ulDVqxou2/RouT8+UafvAsX5BirV2s/PYvc8sWpcrbc8j7WAOh4GgCdryIAHjt2LEMvTEab9TOyfXq2vdc2mfnQOXOG7NZNboVaJCQYwXDCBHLUKCPEfPGFsd3Fi8Zo1G++kZY2y8++vnJMS4vb4cPkyy/L7dJJkyREnjght25HjSK7dCE/+yzlFGCW53ziRCRff924PW29tG4tt1qPHEl5O9ZkIqtUMW5x21s+/dQ4n9ls26Lo7x/J9u1DuXBhZNJ0ZwDZuXP6QtulSxKs5861HYnriFtEmT2Gs97H7noPZwfuvCXorHPnxPdwerfNje9je8/ZVQHQmf//eNr7WAOg8zUGwLCwsAy9WBn9nzoj26dn23tt48gPndGjJehY37p8/fWU2z3/vDzm52ds5+trG86eeCL18JV8KVOGnD3b6MtneU4hIeE221WrJrXu7LWe7dkjYXTDBrmNS8o2J09KGPvyS3LsWPKll8jQUOmjZ23jRunb2KgR+dNPxu80Lk769b34otw+zgpHvFaZPYaz3see9h72JO58Xs46d058D6d329z4Prb3nFwVAJ35+/S097EGQOdrDIArVqxgREREupf169cTANevX+/w7dOz7b22yej1pbVs3hxBwFjatYvg6dP2zmm7XffuETxwIIL9+9uuByJYsaI8XqNGBL28ZF3evBF88MEIdukSQV9f2+39/CIYGLj+7v8M6+nvH8HRo+X4WX1+91qOHXP879TRr1Vmj+Gs97GnvYc9aXHn89L3cPb+LPaUxd5zOnToEAHw0KFDLj+3Jx3bke/jv//+WwOgk/0PcFytOF100UUXXXTRRRcHLg2gnKIxAK5bt47Xr19P9xIWFkYASfPqOnL79Gx7r20yen3ZYXH3c3LW+R1x3Mwew1nvY30Pu/595M5z58T3cHq3zY3vY3vPKSIiggAYERHh8nN70rEd+T62/E6hLYBOo30Aswl3PyftP6V9AB1B+wA69hj6Wex62gfQ8cfQPoDuoaOAswl3F1TVEZQ6CtgRdBSwY4+hn8Wup6OAHX8MHQXsHilmAskJcuKHjspd9D2scoLc8j7WqeAcTwOg82kAVMoD6XtY5QT6PlaZpQHQ+XJkAHT37VKlskrfwyon0PexyiwNgM6XIwOgUkoppbIvDYDOpwFQKaWUUh5FA6DzaQBUSimllEfRAOh8GgCVUkqpLNBRwI6nAdD5NAAqpZRSWeCqOoC5iQZA59MAqJRSSmWBBkDHy40BMADAWAC/AbgKwAygTzr3bQ3gGwD/ALgJ4DiArwGEpLGPBkCllFIqCzQAOl5uDIDlIKHvJID1ABKR/gC4C8AxAJMAPAdgAoDrAM4DKJbKPhoAlVJKqSzQAOh4uTEA+sIIa/cjYy2AD9lZ1/zuMcalso8GQKWUUioLNAA6Xm4MgNYyGgBTcwXA8lQe0wColFJKZYEGQMfTAJj1ABgAIBbAl6k8rgFQKaWUyoLY2FiGhoYyNjbW3ZeSY2gAzHoAfAfSj7BlKo9rAFRKKaWUR9EAmLUA2AJAHIBFaWyjAVAppZRSHkUDYOYDYDVI37/dkNvAqQkGwLCwMIaHh9sskZGR7n79lVJKKZXDRUZGpsggYWFhGgCR8QBYBsAZAEcBFL/HtsGQX3CKJTQ01N3vCaWUUkrlcKGhoXZzCDQAZigAFgJwGFL7r2I6ttcWQKWUUkq5jbYAppRWAAwBUBWAt9W6fAB2AIgCUC+d59A+gEoppZTyCN99Rx47lnv7AL4EYDSAGZAA+P3dn0cDCLq7zbd3Hytrtd+Ku+u+BtAz2dIplXNpAFRKKaWyICYmhjVq1GBMTIy7LyVbO3WK9PMjfX3JVatyZwA8CSndYm+xBL65ABJgGwDT2u9EKufSAKiUUkplgRaCdow+fUiALFeOvHQpdwZAV9IAqJRSSmWBBsCs27eP9PKSALhgQe69BexKGgCVUkqpLNAAmHXt2kn4q1uXTEzUAOgKGgCVUkqpLNAAmDV//CHhDyBXr5Z1GgCdTwOgUkoplQUaADPPbCYbNZLw17q1/ExqAHQFDYBKKaVUFugo4Mxbtcpo/du1y1ivAdD5NAAqpZRSyi0GDZLw99hjtus1ADqfBkCllFJKuUXlyhIAP/nEdr0GQOfTAKiUUkoplztzxrj9u2+f7WMaAJ1PA6BSSimlXG7ePAl/hQtL6RdrGgCdTwOgUkoppVyub18JgF27pnxMA6DzaQBUSimllEuZzWSZMhIAZ8xI+bgGQOfTAKiUUkplQWxsLENDQxkbG+vuS8k2jh41+v8dOZLycQ2AzqcBUCmllMoCLQR9b999R44ZQ1oy8syZEv5KljSKP1vTAOh8GgCVUkqpLNAAmLbwcNJkksD30kuyrnt3+blnT/v7aAB0Pg2ASimlVBZoAExbx47G7V6AXLCALFpU/v3NN/b30QDofBoAlVJKqSzQAJi6LVuM4FezpvzXx8dYd/Kk/f00ADqfBkCllFIqCzQA2mc2k82aSdBr3pyMijJm/gDIChVS31cDoPNpAFRKKaWyQAOgiI0lly8n9+whExLIlSuNsPfnn7LN/v1k3ryy7rnnUj+WBkDn0wColFJKZUFCQgLDw8OZkJDg7ktxmzt3yMcfNwJfgQJkkSLy786dbbf95ReyXTv75V8sNAA6nwZApZRSSmVaYiL57LO2Az0si8lEHjqU8WNqAHQ+DYBKKaWUyhSzmXz5ZSPwffwxefas1P176SVy4cLMHdfTAuCL7r4AJ9AAqJRSSqlM+egjI/yNGuW447o6AJYGUDaNZZErLsLFJAAeO+a4V00ppZRSOZ7ZTJYoIeGvf3/7M3pklqsD4HIAiQDMqSyJrrgIF5MAOGKE4141pZRSSuV41vP5/vOPY4/t6gAYCCA0jcdnuOIiXEwCYIECZEyMY189pZRSKhdw5SjgTZvIyZONOXXdac4cCX/Fizu29Y90Tx/A59N4rIerLsKFJAAC5CefOPbVU0oppXIBV9UBNJvJkiUd398us/r1k2vp2tXxx/a0QSA5kQTAokXJ0qWlkI9SSiml0s1VAfDsWeOWq48PefCgU093TxUryrV8/rnjj60B0PkkAIaGyqv47beOfxWVUkqpHMxVAXDVKtsae82aSQ0+d7AOo/v2Of74nhAAn3bXiV1EAuDp02RQEFmjhvveTUoppVQ25KgAGB2d9uPjxhl97izh6+uvs3TKTFu8WM6fP79M++ZonhAAP3Tx+QIAjAXwG4CrkNHHfTKwf34AswBcAnADwB8A6qexvVEHcMQIeTVXrnT8K6mUUkrlUFkNgJcukW3byqwZq1alvl3nzvI1/eKL5PPPy78LFiQjIzN54Vnw4oty/g4dnHN8TwiAH7n4fOUgoe8kgPWQ0jPpDYBeALYBiAbwDoAhAA4CuA6gUir7GAHw3DnSz49s2tQ5r6ZSSimVA2UlAG7fLl3wLS16/funvm25ckar39WrZNGi8vNzz2X+2jOrVi059+TJzjm+JwRAV7cA+gIodvff9yNjLYDd7m7fxWpdEQDXAHyXyj62M4FY/qTYssU5r6hSSimVw8TGxjI0NJSxGazNMns26etr26+vdm372169amyze7esmztXfvbyIvfvz9pzyIgrV4xr+fNP55wjNwZAaxkNgEsBnLez/isAMZBwmZxtADxyRN5JTzzhnFdUKaWUUvz3X7nlC5B16xo19Uwm8ubNlNuvX2+M/rXkzIQEsl49Wd+2reuufeVKOWfevM4rHqIBMGMB8F8AP9tZ/xzkVnJNO4+lnAu4Sxd5Zd09vlwppZTKoSw19KpUIW/dkgEgXl6ybtu2lNt//LE8VqeO7fp164zWuN9+c821Dx8u52vd2nnn0ACYsQAYA+BrO+vbQQLgo3YeSxkAw8Lkle3Tx3mvrFJKKZVLHTtGenvLV+38+cb66tVl3WefpdynZ095rG/flI+1by+P1axJxsc77bKTNG4s5wsNdd45PCEAunoQiLWMBsAEANPsrH/47nE62nksZQAkyZYtpZ359GnnvbpKKaVULmTpbl+5sm1g691b1vfqlXKfGjVSD4fh4cbt5N69yZdeIrt1k4Dm6Cnarl41wuv69Y49tjVPCIBD3HViuLAFMCwsjOHh4cby1VeMBMhXX3Xeq6uUUkrlMidPSvsKIIM4rH32mayvVs12/c2bRsDbvNn+cQcPth1MYlk2bXLs9VtqERYqJLeuHSEyMtI2g4SHMywszO0B0J1c1gfQ3hJavDiZLx95+bJjXmGllFIqlxs4UAJUhQpkXJztY9u2GaN6rW/Mbd9uBLrUKs1cvkx26iT98rp3J8uUcfycwTdukIULO/72b2hoqN0cAg2A6Q6Ay2B/FPAs3GMUcIoWwPBwRs6cKa/y8OGOe5WVUkqpHCYmJoY1atRgTExMmtv9/LNR9mX27JSPW7f0bdxorJ8xw7hlnF6WGV6TDxrJis8/l2PmyyelYBxFWwBTSisAhgCoCsDbal03SEvfU1brLHUAF6ZyDvt9AEmZEq5uXTJPHjIiwnGvtFJKKZWD3KsQ9H//SYFnSyveffelXj6ldm3Z5uOPjXWWVsOnn07/NVnGcwIyb29WxcWRZcvK8YYNy/rx7sVdfQBLAijroKVkJs7/EoDRAGZAAuD3d38eDSDo7jbf3n2srNV+JgB/Qmb+GANjJpAoAPelcq7UAyApf64A5KBBzn+1lVJKqWworQB48KDtTB+PPZZ2m4olKD7zjLGuYUNZ9/776b+mhASySJHUWxszat48OZavL3nmTNaPdy/uCoCHAcwBMNcByz+ZOP9JSEuevcUS+OZCRv2WTbav9VzAMZDp5NI3F7A9ZjPZrJkM+Tl61PmvuFJKKZXNpBUAH39cglNQkEzhdq9RudOn297ujYuTG3GZqfNnKR3z1FMZ2y+5xERjFHJaU9U5krsC4HYHHmuXA4/lDGkHQFKGHAHks8+65lVXSimlspHUAuDJk0Zx559/Tt+xduwwWguvXTP68gHkxYsZu66FC43wmXzASUYsXWoMTjl0KPPHyQh3BcBXHXis1xx4LGe4dwAkjT9h9u1zzSuvlFJKZROpBcC335avznLl5JZsety+bZSJ6drVCH9DhmT8ui5fNgLohg0Z358kY2LIUqXkGN27Z+4YmeEJdQDvxRdAUXdfRBakLwDu2SOvvs4RrJRSStmwNwo4Lo4MCZGvzgkTMna8+vVta/l17Zr+AJncAw/IMd58M3P7jxgh+wcEuHY8qKcFwC8gfQMts4M8AxlgcQ1AGIBSbrqurEhfACRl+BFAbt3q/FdeKaWUcoOzZ6We3pNPkh99RO7caTtbx9mzZ7lgwYJ7HueHH+Qr09ubPH8+Y9cwaJAR/tq2JWNjM/gkrIwdK8epVSvj+4aHG62RH36Y+WvIDE8MgN0B5IOUV7kNGYxhAlAOwOfuu7RMS38APHJE3sktWjh+bhmllFLKzQ4csB2xa1m8vcmSJcny5Zewsm8w+3t58fjx42keq21b2bdLl4xfx6pVsu9DD0nx5azYudN4HhkZvWs2y6ywgAwAyUofwszwtAAYavXvlyGjcq1b/ca79nIcIv0BkDQmMFy92rmvvFJKKeVEUVHkunXk/v0y2GLdOjI4WL7iChSQr7tq1Szh6T8CPfkwwMvwYjxMPLs59QB4/LgRujL7dXn6dOZv+1pLTCSLFpVrmTUr/ftZBpAkL0rtKp4WAEda/Xs+gNPJHs/5AfD0adLPj2zQQFsBlVJKZUtmM9mkif25c8uVsx3p+v3361m0SCm+BjAB4HUE8Qn8xCpVyEuX7B//rbeM6d4SE13ylNLUu7dcT+fO6d+nUSPZp0cP511XWjwtAE6++99ASN+/L60eKwyjb2B2krEASEoJcIBcvtx5r7xSSinlJMuX2w9/DRqQFy7INrdv3+brr7/OvACXeHuTAM3VqvGvJUeYL59s36iRjJK1du0aWbBgxgs3O9PixXI9gYGpz0Bi7dgx43eyfbvzr88eTwuAnSGFlQ8AiIT0+ysBKfVyFsBb7ru0TMt4AIyMlOFA1arZ9oxVSimlPFx8PFmlijG1WlSUzNbx559GP7d9+/axZs2aLA/wH0va69yZvPtd+euvxuCIJ56wbeV74w3jNvLVq254gnZcvWrMMbx+/b23nzjRaA11180+TwuAAFANMuduibs/1wbQ9+7S010XlQUZD4AkOWaMvDvmzHHOK6+UUko5wddfGwM7/vnH9rE7d+5w3Lhx9PX1ZVuTiTfz5qXZy4scNy7FvdwFC4xWso8+imdoaCiPHImln1/KuXw9QdOmcl1vvHHvbS3zEY8c6fzrSo0nBsCcJnMBMCqKLFRIhktldYiSUkop5QK3bhlFjZNPcb9jxw7WqlWLADi5eHGaTSYZFbJqVarHe/FFy/y4ZgL12a3bHQJk+fJZK93iDOPHy7XWrJn2duHhRrD96y/XXJs97giAXQD8COBpAHlcdVI3ylwAJMnPP5d3yDvvOP6VV0oppTLJbCb//pucMoXs2JHs04f85BNy6FD52vL3l3p/JHnjxg2+9tprNJlMLOzjw7+rVzdqnyRvIkzm1i2pryeB6UxScFq0yAVPMoN27zaC3enTqW9nucFXtap7x3q6qwWwKoCxAPYAmAfgMUitv5wo8wEwPl7aif38pMeoUkop5WbbtkkLnL1BHpbFMivG2rVrWaFCBQJg79q1GVu2rNE5MDo6XecLDyf9/c1Jx27Y0DNG/iaXmEgWLy7X+NVX9rcxm8n77pNtQkNdenkpeMIt4EYAPgWwD1IIuom7LsRJMh8ASSkOBEjJdKWUUsqNzGZpuLOEsQoVyMGDpQxK7drS7698efL48Wvs378/ATAgXz6u696d5jx5SF9f8osvMtz0NXXqraRzZnbOXVfo21eusWNH+49bZn0FbEvhuIMnBEALE4A2kKng9gKYCKCGW6/IMbIWAEnymWfk3fLLL4575ZVSSqkMsrRJAOSWLSlz3O3bZn733SIWL16cANjxkUcY06WLMeR1585MnTcq6jqBFzh9+q2sPwknWrrUmNfXXh9Fy7y/deu6/tqS86QAaC0PgKcALIfMAfwmgDJuvaLMy3oAjIgg8+UjK1f2vF6vSimlco3u3SXAtGqV8rF///2Xjz76KAGwcOHCXPH++zRbmgufeCJLNVssYSVL36UucO2aUQ5m7dqUj1tunU+a5PprS85TA6C1YAD9AfwOYAOAFwAUcusVZUzWAyAp7xZPedcopZTKdS5cMGrzLV1qrI+NjeXYsWOZJ08eAuBzzz3H6C+/lIYLb2/yww+z3GkvISGB4eHhTHDE3G1O9tBD8jt6/XXb9adPG62n4eHuuTZr2SEAWisO4FUAWwGsAtADQD63XtG9OSYAxsZKz9F8+aRFUCmllHIhS5mTkBBjtov169ezSpUqBMAaNWpw2+rVRke4kiXJzZvdes3uYCnyXLu27fpFi4wC1p4wiCW7BUBrlQCMAbDS3RdyD44JgKSURgekT6BSSinlIvHxZJky8hU0ZgwZGRnJXr16EQDz5s3LSZMmMe7PP6WrEkC2ayezWuVC27cbLX3Wcxm/9JKsa9/efddmLTsHwOzCcQGQlNHAgPTEVUoppVxgxQr56jGZEjhx4gwWKFCAANiuXTueOHaM/OgjGeHr50d++ql7C9y5WXw8GRQkv69ly4z19evLuokT3Xdt1rJbAHzA3ReQCY4NgMeOkXnySNuyzhOslFLKgW7eTHl78uJFslEjEtjFAgUaEgBLlSrF5cuX03z+PNm2rVHZeO9e91y4h2nfXn4lQ4bIz9HRxuAQT2m/yW4BMMzdF5AJjg2ApMwMAshMIUoppVQWxMeTP/xAtmwpXy333Sfz7F65ItPR589/jcAQAl40mbz5xhtvMDo6WkqTFS0qOw0YoNOWWvnoIyMTk7Feou4AACAASURBVDIiGJBBNDdvuvfaLDwtAOYDMB7AbwD+SLZsAZDgvkvLNMcHwJs3pTNG/vy5to+FUkqprDGbyblzjb59yRcvLzOBbwkUJQBWr96cBw8elPnZXn1VNsqf3/Y+p5Nkp1HApG3B53PnyPfek383auTuKzN4WgCcB+AygG2Qki/Wy1ZoADQsXy7vpt69HXtcpZRSOYrZTB48SJ44Yay7do3s2tUIKd7e8vNPP5HDh5PBwQcJNCcA+vsX44wZ82k2m2XCW8tcvs2akadOueQ5ZJc6gBYJCTLaFyAXLiQffVT+PWyYu6/M4GkB8CcA3mk8vs1VF+JAzgmAZrPRyWDlSsceWymlVI6wdSvZvLkR9CpXJl94wbbVr2dP8swZ2f769et87bXX6O3tTS8vL3bp8iKvXbsm94nHjpV7mL6+5AcfSMpxkewWAEmyc2f5/fbrZwwKWb7c3Vdl8LQAOPkejzd1yVU4lnMCIEmePSt/YoSESGcNpZRSiuThw0bRiNSWoCDyu+9ke7PZzIULFzIkJIQA2LhxY+7evVsePHKEbNzYKG63b5/Ln092DICffSa/srx5jd/5+fPuviqDpwXA0QCKpPH4OFddiAM5LwCS5Pz58q7q0cM5x1dKKZVtxMSQb75pzNgByMwUmzeT+/fLpBxt28qUbsePyz7h4eFs2bJl0hRuX3/9NRMTE2U48BdfSILx8pIDu2k60uwYAA8etA3cFSq4+4pseVoA9AfwAYBnAVQBUNZqqQTghPsuLdOcGwDNZrJjR3l3/fCDc86hlFLK461dS5YqZQSOatXIn39OvSRfdHQ0hw8fTh8fH3p5eXHw4MG8YrmbdOaM0XGtQgVyyxbXPRE7smMANJuNQdIA2auXu6/IlqcFwAcBnAKQmMaS3Tg3AJIyQWOhQvJOsy47rpRSKle4do0MDpagERBATp5sTNeWnNls5qJFi1iyZEkCYMOGDblz507Lg+SsWUantYEDpYidm2XHAEiSTz9tBMAZM9x9NbY8LQBuB/AZgIEA+iZbBgK44qDz+EH6G54DcAtSX7BNOvdtAylLcxnAfwB2AOiVxvbOD4CkMclgt27OPY9SSimPM2aMfAUUKmQM6LDn4MGDSbd7CxUqxK+++soorXLiBPnII3Kg0qVl+lEPERsby9DQUMa66RZ0Zn35pREA9+9399XY8rQA+Nk9Hl/qoPMsBnAHcrt5AKTETBzuPcikI6QVcguAFwEMgZSoMQN4NZV9XBMAzWbyqafkXbZ0qXPPpZRSymNcvWo02KU2zVhUVBRfffXVpNG9Nrd7LX39AgLkIIMGkVFRrnsCOVhEhJRKrFnTpYOm08XTAuDEezxe3AHnaAwJbK9ZrcsD4CgkCKbldwARAHys1nnf3fevVPZxTQAkpSh0kSJk4cIyd49SSqkcb/Roo/Uv+VdNYmIi582bx+LFixMAH3jgAe7atcvY4N9/jTox5cuT69a59uJzgcuXPeIuegqeFgDbAOifxuObHXCODyGtfYHJ1o+CtO6VSmPf7QAOpLL+z1T2cV0AJKUiO0B26ZKrJ+NWSqnc4MoVo/Xv/fdtH/vrr7/YtGlTAmCRIkX4zTffyOheUur6ffwx6e8vO7/yigwhVrmGpwXA0QBWAfgbwEIAc6yW+QBiHXCONQDC7axvDQmAHdLYd9LdbcZBRiVXBDAGEig7pbKPawMgKf0AAekXqJRSKsd6+235uC9c2GhlunLlCocMGUKTyUSTycSXX35Zijlb7N5NNmhgVIbevNk9F6/cytMC4GUA0QBO2lnOwjGjgA8CWGtnfXXIreGBaeybF8CSu9dhvrvEAHgyjX1cHwAvXyaLFSMLFpRJCJVSSuU4O3aQgYGS4yZNIuPj4zlt2jQWLFiQANi8eXP+9ddfxg4xMTIXmckkc7+NHClzy6tcydMC4AEAhdJ4fLcDznEMwM921leABLqhaezrDWn9WwKgG6Re4QZIaG2cyj6uD4Ak+X//Z1QAjYtz7bmVUkplydWrUqg5tY/v5cuNu7clS5K//rqBtWvXJgCWKlWKixcvlrl7LVatIsuWlR0eeMDzhqQql/O0ANj5Ho+/4oBzZKUF8CsAe5Ot8wHwD6QfoD3BABgWFsbw8HCbJTIy0rmv7rBh8j/78OHOPY9SSqksMZvJDRvIESPk7qyXl3x8e3uTlSqRjz1GvvQSOXUq+dZbRmmRSpVOs337bgRAPz8/jh49mjdu3DAOfO4c2bWrbBwcTE6f7nnDUdMhJiaGNWrUYIz2U8yUyMjIFBkkLCzMowLgF/d4fKcDzpFWH0AzUu8D6Avp6zfezmOfAoiH7ehgi2DILzjFEhoa6txXPC6ObNrU82agVkoplWTPHrJVq7Tn7U25RLNChXeZN29eAmCnTp147Ngx46AJCeS0aUZ16P/9L1t3CcquhaA9RWhoqN0cAg8KgNcBBNhZb4LU7HNEH8DURgG/jbRHAYdAAuL7dh6bfnffPHYec18LIEmePSszhAQFkf/84/zzKaWUStXly+SCBTIrxMcfkz17Gq19ANmkCRkaKuMyzpwhN24kZ88mR42Shry6deMYHDyN+fIVIwBWq1aNq1evtj3J9u3GII8yZciffnLLc3UkDYBZkx1aAM0AZiRbVwPS8meGYwKgpQ7g61br/AD8C2Cb1boyAKpa/WwCcA3AYdi29AUCOAP7rYqAu/oAWlu/Xjr91qpFWt8aUEop5TJHjpAhIfZb9Bo0kLCXGrPZzGXLlrFy5coEwJCQEM6cOZPx8fHGRpcukc89Jwf09ZVBHjnklqkGQMfztD6AZwB8DGAYAC8Ab0FKv2wGUAfSB88RlkJmApkM6fO37e7Pzay22QgJitYsrYR7IDN/DAdw6O66Z1I5l/sDIClDxCyzUWt9QKWUcql//yVLlJCP4cBAsk4dae17/HFy/nyZjCM1GzduZOPGjQmAQUFBHD9+vG0/v4QE6dtXoICcoE0b8vBh5z8pF9IA6HieFgAtXoC0tN2EtNR5Ofj46ZkLeAOABDv7PgMZ8HEVwA1IAei0Bq94RgBMTCSffNIzZ6RWSqkc7NgxslQpY7aO9A7A3bdvHzt06EAA9PX15dChQ3np0iXbjf78k6xf35i/d9myHPlHvgZAx/PUAAgA78L2Ni0A/OGOC8kizwiAJHntGlmxotwa2LHD3VejlFI53t9/Szc8QEqzWpflS32fv9m1a9ekTvrPPPOM7QAPUgZ09O0rB/bxyVG3e+3RUcCO584A+Bok5KW1HIdM0TYUcrs1ytUX6QCeEwBJ+fTx95d6UJcvu/tqlFIqR1i3Trrf/fKL0QC3aZNxV7ZAARntm5Z///2XPXv2pJeXFwHwySeftC3kTJK3bpETJ5IBAcbt3kOHnPOkVI7mzgB4GHIL1d6sH/aWCDhmEIireVYAJMk5c+SDo21bmQ9SKaVUpiQkkGPG2I7krVOHfPdd0s/PuDN78GDqxzh58iT79+9Pb29vAmDbtm25I/ldGrNZbu+WK2dM4bZyZY683atcw50BcCuAchncxxEzgbia5wVAkhw4UD5EBg7UDxCllEqn2FgyIoI8elRa9Fq3NoKfZaIN66VOHanGZc/p06f5wgsv0NfXlwDYqlUrbtmyJeWGe/eSLVoYxZw//pi8c8e5T1TleO4MgJ0ysU9Hh1+F83lmAIyLkxZAgBw3zt1Xo5RSHu3GDXLsWGPu3eTLW2/JDZUDB6S2n7e3zN4RFZXyWKdOneLgwYOTgl+TJk24fv36lBueP08+/7w0L3p5kYMGka6oH6tyBXcFwHweeixn8MwASJLR0cbosTlz3H01SinlMWJiyJMnyd27yS+/NEq4JF9KlCB//jnl/rdvp7y5curUKQ4aNMgm+P3++++2c/ZaTh4aavTza9WK3LfPWU9V5VLuCoB/OvBYjpgezpk8NwCS8hdmuXLy5+pvv7n7apRSyq3i441aysmXgADyvffIEyekIS46Ou36fRYnT57kwIED6ePjQwBs2rQp16xZkzL4xcdL2ixeXE5YtSq5YoV201FO4a4AuBNAWQcs5QDsdeWFZ4JnB0BSRpAVLCifbvcapqaUUjlUYiLZu3fK4BcUJHdfz5/P2PGOHTvG559/Pin4PfTQQ1y7dm3K4Gc2S9CrWlVOWLw4+dVXOkjPSmxsLENDQxkbG+vuS8kx3BUApwCY66BliisvPBM8PwCS5NatZJ488sFz4oS7r0YppVzKbCZfeMEIfe++K4M9bt3K+LEOHz7M3r17J43qfeihh7h+/fqUwY8kw8LI5s1tmxi11l0KWgja8Ty5EHROkT0CIEn+8IN0NK5albxyxd1Xo5RSLvPGG0b4Gzkyc3ddDxw4wO7duyfV8WvdujU3pjbB78GDZKdOckJvb3Lw4Iw3MeYiGgAdTwOg82WfAEiSn38uH0hNmmTuT1+llMpmZs40wt/LL2c8/O3Zs4edO3dOmrmjXbt23LZtm/2Njx2TOdkthQP/9z8t5JwOGgAdTwOg82WvAEiSI0bIB1P79jKUTSmlsqno6LQrp2zdKrNjAmT37ukb1EGSZrOZmzZt4uOPP54U/Dp16sRdu3bZ3+HcObnH7ONjFOJPbVuVggZAx9MA6HzZLwAmJpL9+hnTDN244e4rUkqpDDl0iBwyhMyXTz7KOnQgkzfKRUQYA27r1SNv3rz3cRMTE/nTTz+xSZMmBEAvLy8+/fTT3JdamZYrV+SPan9/4+7Khg1Zfn65jQZAx9MA6HzZLwCSEgIHD5YPrObN5c9opZTycJGR5JNP2i/jApAPPSS1lV96iaxdW9YVKSI1/9ISHx/PBQsWsFatWgRAPz8/Dhw4kP/++6/9Ha5cId9+26gcXacOuWqVlnTJJA2AjqcB0PmyZwAk5YNq2DD58HrgAfLaNXdfkVJKpSo8nCxf3gh71atLWb1VqyT42QuE3t5pN8jdvHmT06ZNY/ny5QmAgYGBHD58OM+mNr/b1avk6NFSOwYgq1UjFy9O/71lZVdCQgLDw8OZkJDg7kvJMTwxAD4CoK27L8KBsm8AJCUEvv22cY/k0iV3X5FSSqWwerVMk2up2/fDDykb2zZtIocOlULPzz4r4y+WLbN/vAsXLnD06NEsVKgQAbBIkSIcP348r169an+Hq1fJd96xDX6LFpEaWJSH8pQA6AdgAIAwADMAfAlgF4BBAPzdeF2OkL0DoMWECfKhVqOGlipQSrndjRvk7NlSoLlePWNQbblyUmElsw4cOMB+/frRz8+PAFipUiVOmzaNN1LrC508+FWtSi5cqMFPeTx3B8AQABMA7AHwJoCCVo8VBDAKwD4AEwGUcPnVOUbOCIAkOWWKfMDddx955oy7r0YplUvFxZGNG6e8nfvgg+TFixk/ntls5u+//862bdsmjeht1qwZf/zxx9RvOV64IIM7LH38NPipbMZdAbA+gAUANgLoBsA7jW29ATwDYAuAhQAaOvviHCznBECSnDHD+DM7tc7PSinlRO+8Y/Tfe+opcvJk6ceX0ZnTbt26xa+//jppYIfJZGK3bt0YFhaW+k6nTpEvvigzJwFkzZoa/FS25MoA6AXgfwD+gAS5BzJxjAcBLAawAUDXu8f0dDkrAJLkt9+SJhNZoAD5++/uvhqlVC7y55/y8QOQoaGZO8a5c+c4evRoFi5cmAAYFBTEYcOG8WRaQ4GPHCH79jXq+DVqJPP36uAOlU25KgAOhdzmfR9AKQccrzSADwDsBfCSA47nTDkvAJIS/AoUkE/iKVO0tIFSyuFu3pTux59/Th4/LlPkVqpk5K+4uIwdb+fOnezZsyd9fHwIgBUrVuSnn36a9ufzrl3k008bnQxbtiTXrNHPPBfTUcCO56oA2BlAXiccNx+ALk44riPlzABIyi3g6tXlQ7FPH501RCnlMFFRUoLUuo9f4cLy37x5yX/+Sd9x4uLiuHTpUjZt2jSpf9/DDz/MlStXph4mzGby11/Jhx82Tt6+vUwbotxC6wA6nrsHgeQGOTcAkuT160bV1caNZbojpZTKgsuXyfvvl48Vk4ksWdI2CM6Yce9jREZGcsKECSxVqhQBME+ePOzfv3/qM3aQ5J075Lx5RoVoHx+yd29y/37HPTmVKRoAHU8DoPPl7ABISh8YS63AEiXItDpQK6VUGiIipNoUIHP0LlsmDXJ//UW+/z75xRdp333dvXs3+/Tpk1TGpVSpUpwwYQIj05oQ+Pp18uOPydKl5cSBgeTrr2u1Aw+iAdDxNAA6X84PgBZLlsi9GT8/GSiilFIZsGEDWayYZDB/f7kLmx537tzh4sWLk+bnBcCHHnqIy5YtY1xaHQVPniRfe82oIB0SQk6aRP73nyOejnIgDYCO54kB8EV3X4CD5Z4ASJJ79pBlysiHac+eOn2cUuqezGZpgPP2Nubm3bTp3vudOXOG77zzDosXL550m/e5557j3r170z7Zli0yDYhlOHHNmlJVOjbWcU9KOZQGQMdzRwAsDaBsGssiV12Ii+SuAEjKbOwdO8oHa6lS5Nq17r4ipZQHuXWLHD9ePiYaN5aPCUv/vsaN077zmpiYyDVr1rBz5840mUwEwPLly3PSpEm8fPly6jveuUN+9x3ZsKHtwA4d0ZstaAB0PHcEwOUAEgGYU1kSXXUhLpL7AiApH6jffGNUyX/lFanpoJTK1fbtM/r4JV9eeCH1Rrhr165x6tSprFKlCgHQy8uL7du3588//5x2aZCLFyVtWkaS5M0rJzp82DlPUDlFbGwsQ0NDGauttA7jjgAYCCA0jcdnuOAa/ABMBnAOwC3IHMRtMrB/dwB/ArgB4D8A2wC0SmXb3BkALU6cMGo5VK1K7tzp7itSSrlBYqKUDPXzk48DPz+ZUOPjj6Vhbs+elPuYzWZu376d/fr1Y968eQmAhQsX5ptvvsnjx4+nfjKzWSpG9+ghI0ksdyMmTZK5e5VSbusD+Hwaj/VwwfkXA7gDKSY9AMBWAHEAmqZj3/cgrZRLAAyE9FmcAaBnKtvn7gBIyhRJH30kn/je3lK+P6MVXJVS2dbNm2TXrkZLX40a0hKYmuvXr3PGjBmsW7du0qCOJk2acN68ebydVr3RmzelL1/9+sbJWrUiv/9eP3OUSsYTB4E4W2PIrebXrNblAXAUEgTT8iAk/A3NwPk0AFocOEDWrSsfynXrkn/84e4rUko52dmzRk0/gHzpJekDaM/u3bs5cOBABgQEJE3R9uKLL3L/verw/fsvOXw4WbCgnCQggBwyhAwPd/wTUiqHyI0B8ENIa19gsvWjIOEuranqlgA4a/VzQDrOpwHQWmwsOXq0cR+oY8f0l/RXSmUru3cbXe98fKRxLrno6GjOnDmTDRs2TGrta9iwIb/++mvGxMSkfvA7d8ilS8nWrY10WbWqzBsXFeW8J6VUDuEpAfBpF55rDYBwO+tbQwJghzT2vQTg/wC8CuAypCXxPNKej1gDoD0nTpDduhnfDK++qn1zlMpBli+X8RYAWaiQ1PizMJvN3LlzJwcMGJDU2hcQEMABAwZw9+7daR/42DFy5EijYKCvr3yWrF+vo3mVygBPCYAfuvBcBwGstbO+OiTQDUxlvwJ3H78M4DrkFnJXAL/cYz8NgGnZtk3qPgBy+2bqVPnLXimVLZnN5IQJRqNctWrk0aPyWFRUFKdPn8569erZtPbNmjWL0dHRqR/0zh1JlG3aGAeuWJH84AMpO6WUyjBPCYAfufBcxwD8bGd9BUiQS61/X2kYZWq6Wq33grQonk5lPw2A95KYSC5caBSQrlyZXLSIjI9395UppdIpLo5ctYps187IaI8+Sl67ZubWrVvZr18/5suXL6lv35AhQ9Iu2EySBw+Sw4ZJZWjL3YKuXaW2aGKia56Y8ggxMTGsUaNG2t0CVIZ4SgDMDi2Ahe8+HgsJfdbGQIJhaTv7BQNgWFgYw8PDbZY056bMjW7dIidONGoHVqxIfvUVmdaoP6WUW0VFyfiLokVta/r173+JH374MatVq5bU2vfggw9yzpw5vHHjRtoH/OorslEj42BVqpCTJ5MXLrjuiSmPooWgsyYyMjJFBgkLC8t1ATCtPoBmpN4H0AtSM/CcnccGQwJgbTuPBePuh1/yJTQ01N3vCc905YqUirGM6CtRQsrIpHWLSCnlVGfPkitW2E6Tu3kzWa6ckdNMpgQ2bryaTZt2pa+vLwGwUKFCHDZsGA8ePJj6wRMTpSpA795Gx8GAAPK558itW7Vvn9IAmEWhoaF2cwhyWQBMbRTw27j3KOA/7+7rk2z9uLv7htjZR1sAMysmRirHWoYRFixIjhlDpjXdk1LK4S5cMKZr8/UlH3+cHDSI9PKSdfnynWSbNqEsVaps0pdKmzZtuGTJkrRnbjh8mHz7baP7B0A2bSqzCOkffMqKBsCs0RZAYakD+LrVOj8A/0Jm9LAoA6Bqsn1fhQQ960LW/gCOAziQyvm0D2BWxcaSs2ZJ30DLVE79+5NhYdoyoJST3blDNmtmb+q2WwQWMn/+R5JCX8mSJTl69Oi0Z+m4coWcNs0Y/AVIAHz7bZ2eTaVKA6DjeUofQFcOAgGApZCZQCZD+vxtu/tzM6ttNkKCojV/SB/CWEhofRnATkirYNtUzqUB0FESEsglS2y/OOrUkS8T6/tSSimHGTzYcnuXXLHCzE8+2c2qVV+kyVSAAOjr68uuXbvy119/TX1O3lu3ZDaOzp2NqdkCAsi+feXWrw7oUPegAdDxPCUADnHx+dIzF/AGAAl29i0CYA6kHMwtyG3htOYR1gDoDH/9JROJBgfbtgpu366tgko5QGKi1FSWv7Uus2PHT1mnTp2k1r7atWvz008/5eXUumTEx5Nr1pD9+hn/n3p5ydDgBQvItAaCKJWMjgJ2PE8JgDmZBkBnunGDnDOHfPBBo1WwZk0pRGYpPqaUSpfERCnY/PLLZMmS8QR+IdCVJpMM6MifPz+HDBnC3bt302zvDy2zWbpmDB1KFi9u/D/ZsCH5yScykkQp5RE0ADqfBkBX2b9fJhotXNj2i2fKFDIiwt1Xp5THOn9eKjBVrEgC/xJ4i0DJpNa+hx9uw0WLFvGWvUl8zWZy715y1CjLAWS57z4Zza9TPSrlkTwtAAZBBmlUdPeFOJAGQFeLiyN//ZXs04cMCjK+kJo3J6dPJy9edPcVKuUR4uLIESNIkymawDcEHkoKfQULluOwYe/x5MmTKXc0m8l9+2TghmVwFiAj9l97jdy1S7tiKOXhPC0AXoCMsv0TwDQA4yF1+ZIXXs5ONAC60+3b5I8/ylyhlvpiXl4yrPHjj8m0RisqlYOdPp3ImjX/INCHgMzQ4ePjz44de3DdunVMTD4ww2yWVvZ33pHCzJbQV6KE3PLdskUHcyiVjXhaAOwHoH+ydY8A+ARAS5dfjWNoAPQUMTEyxVzXrjIC0fIFVrs2+e67MrBEWy1UDnfixAn26hVKk6l8UmtfmTJNOGPGTEZFRdlunJgoA6tGjCArVTL+nwkJkY6Cmzdr6FMqm/K0AJiW5wB0cvdFZIIGQE906xb5008ycti6z2D58tKasXatFEBTKge4ceMG582bx1atWllV/y/JfPlGce7cZLX34uPJ9eulP62lCDsglaBfeYXcuFFKMimlsrXsFAABYIq7LyATNAB6uvh4Gfo4dChZtqzxhRccLLeOFywgr15191UqlSFms5mbN29m//79GRgYeLdmnx99fLoR+I116iTw/Pm7G8fEkD/8IHX5rP8guu8+cuRIcscObelTbhUbG8vQ0NC0Z5ZRGeJpAbA7gH0AlgFoD8CU7PHpLr+irNMAmJ1Y+jlNmGBbcNrbm2zRQuYkPnxYbxUrj3X69GmOGzeOlSpVSmrta9SoEcePn86QkKsEZP7ei3vOkl9+SbZrR/r5Ge/1unXJsWPJgwf1fa48hhaCdjxPC4CrAAwF8CukCPNVAD8A+ADA/Lv/zm40AGZnFy6Qs2eTnTqR+fIZX5KVK5PDhpHr1umtYuV2N27c4Pz589m6dev/Z+++w5sq/zaA3x2MllI2yCq0bGSVpWzEwQ/lFZG9BGXvIaAIWECGICAIslSmCMiQJcqoTLGykYqAbGSUUUaBpm2S+/3jaZqkTfdJkzbfz3Wdi+bskx7h9pl0c3MjABYpUoQjR47k6dNnuG0bWaGcgYE4zilek/i8Sm3zu+zpqQZnnjePvHrV0Y8ihE0SALXnbAFwPsylfsUBjAGwG8BZAGsBFHXQfaWHBMCs4vlzcvt2sn9/skQJ66ridu3IFSvIu3cdfZfCRRgMBu7fvz9eFW82Nm/ehrNmbeUvv0RzyRePOKTYen6H93kLL5jf2bx5yc6d1dSK8Tt+COGEJABqz9kCYHkAiwH8HwAPB9+LViQAZkWmcdAmT1azkLi5mYeYqVdPrT91SqrQhOYuX77MCRMm0N/fP66Kt3bt2hwwYD4rlL/HKviLozCde9GE0fCMC31Xc7/I291Gqbl3o6Md/RhCpIoEQO05WwAEVAng/5A5S/tskQDoCu7cUVPStWljPfh0iRJk377ktm3ks2eOvkuRSd29+4Q9ey5lyZJN4kJf9uxFWbPmKE7/cD8/r7aay9CdN1E07t17Bi/uytmSqxst5KXfpGpXZG4SALXnjAEwq5EA6GqiolTbwOHDVS9KUxjMmVM1uJ83TwagFskyGAzcs2cPu3TpRnd379i/qHMwO9qwKaZyKkbzOALN7xfAqz6VGdZlOKO2/qIGQRcii5AAqL2MCoCbAQwGkEvDc+YG8GHsuZ2ZBEBXd/48OXs22awZmS2b+R/sChVUSNy9m5ShDUSs8+fPc+zYsfTz81OzcwB8GVU4Bq14LF8TRnnkjHuHHmcvwK25OnJymaXcu0rmuxZZl16vZ2hoKPUyBqVmMioA5gIwCMBRADMBlErHufwBzIUaLmYYnL/oUgKgMHvyhPzpZBqhHQAAIABJREFUJ7J3bzWwrikM5spFvv02uWABefGio+9SZLAHDx5w4cKFfPnll+kOMBDgZ3ny8FiRMnwCb+tS5FdfJadMUfPtyth8Qog0ckQVcEsAO6HG+muQiuMaA/gJQDCAd5BwjEBnJQFQ2GYac3DaNLJRIzXWoOkf+jJlVG/jn34i5d3JkqKjo7l161Z2at2azTw9OQbgTnd3PrMoJY5CNu5HI35f5lPqg/dJSbEQQjOObANYBcC3AA4C6AzbvX49AXQD8AeA5QACM+rmNCQBUKTMw4dqNoa+fdWUdJaDUDdsqAbnPXBAQkAmZjQaeXJPMOe3eJtzvLx4EKDOog2fMXt2smFD3uoxhp0L7aI3nrJ0aZmIRgihPWfoBFIQwHio6uFPAOSPXcYCOAlgAoAijro5DUgAFKlnNJIXLpDz56uqYR8fcyD08lLVgJ99Rh46JANRO7PoaPLYMYZ/9hnP1KjBq9myW3XaeJ49B583baqqdA8coPF5JBctMk/MkTs3eeKEox9CCJEVOUMANMkGVdp3CMBhAD0AZHfkDWlEAqBIv6goFfYmT1bhL6e5IwC9vdVMDhMnkrt2SZWxo+j15N9/q7mjR4xgTL16jLHs9APwAty5AuU5ACNZHSfoDj3ffZf85BNy0CCyeXPz7i++SJ475+iHEkJkVc4UALMqCYBCezqdqg6eOJFs2pTMkcOcHNzcyCpVyF69yO++I8+elc4CWouMVEVz335LDhyoBv+2nCoQ4COAOwFOdnfnZ/Xq852GKwlEESCHDCEDrUdwsVq6diWfPnX0QwrhPKQXsPYkANqfBEBhf5GR5OHD5KxZalo6y6nqTFN/vfKKGnZmxQrV+URmg0hedLQq1fvxR/LTT9VA3xUqWHfYARidJw/PlSzJr7y92R5gOYAN6tXjokWLeOXKA/bqZd594kR1aqNR9fFp2ZJ8802yY0eyTx9yzRqZQEaI+GQcQO1JALQ/CYDCMW7cINevJ0eMIBs0sG5HCKiGZoGB5Pvvq3EKf/6Z/PdfMibG0XeesYxG8uZNct8+8ptvyNGjydatVSlqvCpcuruT5cuT777L8MGDua5TJzaxmJKtfPnynDRpEi9dusRnz8jp08l8+cyHf/ihhDsh0kICoPYkANqfBEDhHAwGFfDWryfHjiXfest6LELT4umpSrlatlThcdEicudOMjSUfPQo8yWY6Gjy6lXVhnLNGnLGDFUH27o1Wa1agqrbuKDn76++g48+Uu36Tp5k2LVrnDdvHuvVqxcX+goVKsQhQ4bwyJEjNBiMPHaMHDaMLFzYugB2xozM99UJ4SwkAGpPAqD9SQAUzu3uXfK338jFi1UR1dtvkxUrJiz9shy0ukIFNbPJe++RY8aoqudly8jNm1XbxDNnVKna8+fa3afRqNo+3r+vAl1oqKr23rJFtcWbNk0F1m7dVG+KmjXJYsVUmLP1HO7uarid118nBwxQpaDbtqmeFxY9q588ecIVK1awefPm9PDwIAB6e3uzU6dO3LFjB6Njq9J37FBfm+UlvL3V1xMert3XIIQrkgCoPQmA9icBUGROMTFqzuIdO1Qp4Lhxqrr49dfJypVJX9/EezHEr2rOnZssWFCVOPr7q6RUvTpZpw758svqz5o1yRo1yKpV1fkrVlRzKZcooYrQPD1Tdj1T8ipVSp333XfJoUPJmTPJdetUaLxxI8mqbp1Ox82bN7N9+/bMmTMnAdDT05MtW7bkDz/8wKcWPTQMBjUij5ub+fKBgepyd+5kwO9JCBcgAVB7EgDtTwKgyLqePFElZr//rkrPVq4k58whg4LIwYNVd9aWLVVobNJEhb2aNdUYJ2XLkn5+KhT6+algWKaMamNXsaLap2pV8qWX1NA3rVqRXbqQ/fqRI0eSEyaolLV8uWq/eOSIKhl89ixNjxIdHc1ff/2VPXr0YJ48eeKqeBs3bszZsxdx1677XLNGDdk3dap61N9+I995xxz8mjRRfUaEENqSAKg9CYD2JwFQCCel1+u5b98+9uvXjwULFowLfbVq1eKMGTN4/fp1rl5tPexiYsuwYdKxWgh70el0DAoKok5mQtKMBED7kwAohBMxGAw8dOgQhw4dymLFisWFvsqVK/Ozzz7jhQsX4vbdtcu65rloUbJ+fdWp2s9PjQaTN68qDRRCiMxEAqD9+QLgpk2bHP27FsJlGQwGHjhwgIMHD7YKfWXKlOHYsWN55syZBMecOGEeOadWLTVVc3x6vVqEECKzcdUAmB3AdAA3ATwHEALgtTScZzcAI4CvktjHF7H/2HTo0IG3bt1y9O9cCJdgqt4dOHAgixYtahX6Pv74Yx4/fpxGi3FZIiPJP/8kf/lFjfrywgsq/AUESGcOIUTW46oBcA2AKACfA+gFNf9wNID6qTjHuwAiABiQggD45ptvEgB9fX05f/58mc5GCDuIioriL7/8wt69e7Nw4cJxoa9cuXLs1+8TNm9+kp6eRg4bZj073j//kCVLJmzXV7AgaVEjLIQQWYYrBsC6UKV2wy3W5QDwL1QQTIkcAC4DGIsUlgA+fvyYmzdvZsmSJQmAtWvX5rFjxxz9+xci03v69Ck3bNjAzp0709fX16pN39ixY7lr1yn27GmMP3sbO3VSw/2dOkUWKmRe7+OjwmDjxqT8JyqEyKpcMQDOgCrt84m3/mOo0rziKTjHpwCuQAXBFAdAkoyIiOCoUaPo4eFBd3d3Dh48mPfv33fwayBE5hIWFsalS5eyVatWceP0AWCdOnU4depU/vPPPyTVyDT585vDXYUKZI8e1sO2mKZqK1KE/Osvxz6XEEJkFFcMgLsAhNpY3wwqAL6VzPF+AJ4BaBf7OVUB0OT06dOsX79+XLXw1KlT+SyN45cJkdUZjUaGhoZy2rRprFevHt3c3AiA7u7ubNq0Kb/66itev349bv/oaHLUKHPQe+EFculS89jPM2dalwaWKEGeP++ghxNCJCsiIoKVK1dmRESEo28ly3DFAHgGqvNGfJWgwlzvZI5fD+Cgxec0BUBS9Uxcs2YNAwICCIBFixbl4sWLGZPEDAVCuIqoqCgGBwdz2LBhcf+NAKCPjw/btm3LPn1WslKle+zXjwwOVuHu6lU1K1316uZw99prtjtxLF+uZrsrW5a8ciXDH08IkQoyELT2XDEAXgSw3cZ6f6gwNySJY18BoAdQ02JdmgOgSVRUFOfNm8dChQoRACtUqMANGzZY9VAUwhXcuHGDS5Ys4TvvvEMfH5+40FeyZEkOHDiQO3fupE6n488/J5ziN3du689ubuTEiUkP03L/vgzeLERmIAFQe64YANNaAugB4C8AS+OtT1EADAkJYWhoqNUSFhZm9ct48uQJJ0yYEPcPX926dblnzx4JgiLLio6O5r59+zh69GhWrVo1LvC5u7uzfv36nDx5Mk+ePGn138CpU+bx+WrUUJ01LOfhLV5czUInHTiEyDokAKZPWFhYggwSEhLicgEwqTaARiTeBvADADoALwMoFbuUjj1mWexnLxvHxY0DGH8JCgpK9Bc1ePBgZsuWLa5h+/r162XoGJHpGY1Gnj17lnPnzmXLli2tSvkKFy7M9957j2PHrmH9+g9YpYrqtFGmDNm0Kfnpp+TWrSrgmcbnu3tXnff2bfKHH8jDh62HdxFCZA0SANMnKCjIZg6BiwXAxHoBf4KkewEHxW43xlsMFn++beO4FJcAxnf58mX2798/rpdj2bJluWjRIkZGRmbQKyNE+t25c4fff/89u3fvzuLFi8f9pePp6cmGDRty0qRJPHr0KGNiDJw6NWHVrq0lb141dp8QwjVIAEwfKQFUTOMAjrBYlx3ABQC/W6wrCaCCxefyUAEv/mIEsA3A/wEoYuN66Z4LOCwsjOPGjWO+fPkIgEWKFOGUKVMYHh6u4eshhDbCwsL4448/csCAAXzxxRet/k+zUqVKHDJkCLdt28YnT56QVCV2ly6RrVqZA179+uSiReR336nOGiNHknXqqLl3vbzIvXsd+4xCiIwlvYC154ptAAFgHdRMINOh2vz9Hvu5gcU++6DCXXLS3QkkpSIiIvjll1/GDSbt4+PDgQMH8tSpUxq8CkKkzZ07d7hu3Tr279+flSpVsgp8xYsXZ5cuXTh79jKOGHGD5cuT/v5qbt3XXyfr1jW35zMtQ4aoAZptefKElP/vEUKI9HPVAJiSuYD3QvX4TY4BwNwktmsWAE2io6O5cuVKVqtWLe4f2tq1a3Px4sVxpSpC2INer+dff/3FRYsWsVu3bixTpoxV4CtRogS7devGb7/9lhcvXuShQ0a2a0d6eiZfrZs/P7l6taOfUAghXIOrBsCMpHkANDEajQwJCWGvXr2YK1cuAmCuXLn4wQcf8I8//pDewyLdwsPDuWvXLk6cOJHNmze3mmoNUHPsdu/end999x0vXbpEo9FIg0F11mjQwDrgFS2qOnKsWkXOnat+njqV3LJFVQFL5w0hhMg4EgDtz24B0NKTJ0+4ZMkS1qlTJ+4f5ypVqnDy5Mk8d+6cXa8tsoaIiAgeOHCAs2bNYseOHROU7uXIkYMNGzbk6NGjuXnzZt41dcG1OofqsWsZ/Bo0INevl/H2hBDCmUgAtL8MCYCWTp06xUGDBsV1GkFsGJwwYQJDQ0Mz7D6E87p79y53797NmTNnslu3bnzxxRfp7u5uFfjKly/PLl26cM6cOTx8+DB1Op3VOeJPWPPsmXX4e+cd8vffM/ChhBBCpJgEQPvL8ABoEh0dzZ07d7J3794sWLBg3D/sFStW5Lhx43j8+HEapN4tS9PpdPzrr7+4Zs0afvzxx2zRogWLFSuWYBwoPz8/tmnThp9//jm//noPJ058yG7dyMBA8tVX1fh6Js+eqV652bKpnrkrV5KPH5NvvGGegeP77x33zEIIIZInAdD+HBYALcXExDA4OJj9+/dnkSJF4v7hL1SoEDt27Mhvv/2WV69edeg9irR7+vQpjx07xlWrVnHMmDFs1aoVy5Url6BUL3v27AwMDGSPHj04Z84c7t27lw8ePIg7z+rViXfSeP991V6vbNmE27JnN//83XcO/CKEEFmSTqdjUFBQgpoIkXYSAO3PKQKgJb1ez3379nHUqFEMDAxM0Ki/f//+3LhxI+/du+foWxUWnj59ylOnTnHDhg2cNm0aP/jgAzZu3JhFixZNUKLn4eHBihUrsnXr1hw7diy///57njlzhtFJNMS7fp3Mk0eFuDJlyPfeI6dPJ+vVSxj4cuYkJ0xQ+1iGvwULMvALEUK4DBkIWnsSAO3P6QJgfHfv3uXatWvZq1cvlipVyipI+Pv7s0OHDpw1axYPHjzIp0+fOvp2s6yIiAiGhoby559/5tdff83Ro0ezffv2rFu3rlWpreWSN29e1qlTh506deLEiRP5448/MjQ0lFGJDaSXCIOBbNZMhbhixUiLQkEaDOSyZWShQmp7o0bk+fPm7WFh5OzZ5KZN2nwPQggRnwRA7UkAtD+nD4CWjEYj//33Xy5cuJDvvfdegoF93d3dWa1aNfbs2ZNffvklf/nlF165ckXaEiYhOjqaN2/e5PHjx7lt2zYuWrSI48aN4/vvv8833niDL774IvPmzWsz4AFg0aJFWa9ePXbq1ImffvopV61axT/++IP3799PdqiflI4ENGeOuRTv119t7/P4scy1K4RwDAmA2pMAaH+ZKgDa8ujRIwYHB3PatGls3bo1S5QokSCkeHl5sUaNGuzYsSMnTJjAH374gQcPHuSVK1dSXRrl7PR6Pe/evcuzZ8/ywIED3LRpE5csWcKpU6dy2LBh7NSpE5s1a8bKlSuzQIECiQY7xI7bWL58eb7yyivs1q0bx40bx2+//Za7d+/mhQsX0jXv85YtpK8v2aQJeeiQeX10NLltm6rCHTOGHD5cVekC5IAB6f9+hBBCaxIAtScB0P4yfQC05fbt29y7dy8XLFjAIUOG8I033qCfn1+iQadIkSKsVasW3377bQ4YMIATJ07kV199xVWrVnH79u08dOgQ//77b966dYuRkZFxJVvh4WT16uQrr5B6ffruWa/X89mzZ7x37x6vXLnCM2fO8PDhw9y1axc3bdrElStX8uuvv+aUKVM4atQo9urVi23btuVrr73GWrVqsUyZMsyXLx/d3NySDHUAmCdPHlaoUIGNGzdmu3btOHjwYE6ePJlLly7lzp07GRoaykePHqV4sG6DgfzpJ3LKFLJPH/LNN8kZMxIv4Tt5kvT2tm6317IlOXAgWbCg7U4e5cuTUsMvhHBGEgC1JwHQ/rJkAExMREQEjx8/zrVr13LWrFkcPnw427Vrx/r169PPz4+enp7JhicAdHNzY86cOZkjRx4ChQmUZIkSZfniiy8yMDCQgYGBrFGjBqtXr85q1aqxatWqrFq1KqtUqcKKFSvS39+fxYoVY4ECBZgrV64UX9fW4uvry1KlSrF69eps0qQJ27Zty379+nHcuHGcM2cOv//+e/766688duwYr127lq5Su8T06GE7tI0dmzAE3rlDlixp7szRsGHC4zw8VFu+li3JNm3I7t3Jv//W/LaFEEITEgC1JwHQ/uIC4Nq1a9moUSP6+vrS3d09Ve3m7t69y+7du9Pf35+5c+emv78/x4wZk+mqV/V6PW/dusVvvz1NL699dHf/iVOnLuWsWbM4fvx4Dho0iF26dOG7777Lpk3fopvbawQaEqjDIkWqsUKFCixdujT9/f0ZEBDAMmXKsGzZsixXrhzLly/P8uXLs1KlSgwMDOTLL7/MJk2asHnz5nz77bfZrl07du3alX379uWHH37ICRMmcObMmVy0aBFXr17NLVu2MDg4mMePH+elS5cYHh5OfXqLHW24e1cNlZLS0ra1a83BrU4dslMnskUL87qJE837Rkaae+3myUP+848KiD//rAZpbtiQnDdP3YMQQmQWer2eoaGhdvk72VVJALS/uAC4a9curl27lkuXLk11ALx8+TKnTZvGy5cvkyQvXbrEatWqcfjw4fZ6N+xm0yYyRw5zgPniC9v7tW1rXWr10ksZe5/28Pw5Wa2aep4WLZLvUHH9Opk3r9q/dWtzaZ/BoIZgMX03nTuTzZuT+fKpz+7u5M6d9n8eIYQQmZMEQPtLUAW8b98+mwEwJCSETZs2ZYECBVi6dGmOHz8+yZA4Z84c1qhRw24vhz18840KJ6aQAqgZJOI7dMgcboYMMc8wcf9+xt+zlnr2tA61kyZZb//jD3LDBvLKFdXmsUkTtV/RogmfXa9XpYHxq3fd3cmvv86oJxJCCJEZSQC0vxQFwHPnztHHx4c//vgjjUYjr1+/zho1anDq1KmJ/vLefPNNfvDBB3Z9QbRy/bpqa2YKKQ0aqLHlEDuosGWzOaNRlfYhdsy5qCjSx0d9XrPGYY8QZ+NG8rPP1BRoBw+SISHkzJnk//0fWbq0es4tW9R9W1q+3Pz8tWqZQ+2uXWrcvS5drIOcr6/55127bN9LTAw5aJD6noYPV9XF16/b/zsQQgiRuUkAtL8UBcAhQ4awc+fOVr+c1atXs2zZsjZ/cZMmTWKxYsV48+ZN+7wZGomOVlW8uXKZw0zr1mo+2UePVGcEgNy923zMhg3mfY8cUetatVKfe/RwzHOYrFuX+FRp8ZcCBVSomzFDzY3r5aXWt2unvpcGDcz7FS1qPi5+790RIxz7zEIIIbIeCYD2l6IA2KJFC3p5eTFfvnxxS548eejr65vglzZu3Dj6+fnx33//zZCXJD2aNzcHmeLFVbiz7LVav77aNmqUeV3jxmpd27bmdQsWqHUvvGB9/PPnqbufc+fUECo//pj6Z/nrL3M4K12a9PMzV2NXqKCGZ5k/X5UEenraDoXlyqkBlUny5k2ycGHztjx5yBUrVPu+8+fJVavIxYtVWBRCCCG0JAHQ/lIUAN9//3327Nkz2V/YgAEDWK5cOV7PJPV869apUr6RI8knTxJunzBBhR9TU8YzZ8yB6MAB836XLpnXnzql1gUFqQDWrp311GWJ0enIqlXVOTw9yb17U/4cDx6QAQHq2LJlyYcP1fqoKFWSGV9YmGqH16MHWbOm6vSSLx95+rT1fvv3q6nX3n6b/O+/lN+PEEK4EukFrD0JgPYXFwANBgN1Oh137txJd3d3Pnv2jDqdjkajkUePHmWePHm4fv16RkdH02Aw8OLFi/w1dl4uvV7Pzp07s0qVKrxz546DXxsyLCyMQUFBDAsLS3I/o5G8eDHx7YcPm4PdnTtqJgqArFIl4fh25curbdOnq84kliVrxYuTwcFkRIQa8mT4cDXLxbNn5uNHjbI+Jn9+MrFC1JgY8vffVVu+lSvVQNSAaosYGprCLyne+RIryUvpdG1CWyl9h4VwZq7yHss4gNqTAGh/cQFw+fLldHNzo7u7O93d3eN+3r9/P0nyyJEjfOONN1ioUCHmy5ePgYGBXLJkCUly//79dHd3p5eXF3Pnzs3cuXPTx8eHuXPndsiLExoaSgAMTUsashATo6o+AXLRInNnjwULEu47eLDaVqqUue1ggwbWnSWyZbMOeTVqqB61+/erDhcAOXSoKnUzVd2aSvNMjh9Xs4/YqsLduDFdjyuciFbvsBCO5CrvsQRA7UkAtL8sOROIln/ptG6twpVpDDsfH9vVxT//bB3G6tRRJXxXr6pesKb12bOrAY9NYTB/frJECfVz/foqdB49au6UUakSOXq0Ku376CNzuHRzU9OmBQSQgYGq1FFkHa7yD6fI2lzlPZYAqD0JgPYXAIAXk6oHtSG1xfqp2T8l+ya3j5Z/6Zg6eJiWAQNs7/f0qXkA6VKlyNu3zdv0enLHDvKXX8wzbPz+u+o0YjpvrlzW1dHr18cv4QsjEEQgjDVqkCdOpPvRUsVeVTlanDet57DXe+xs77AzcWSVoLzDmfvvYmdh65kzKgDa878fZ3uPJQDaX10ADAkJSdUvK7X/Uadm/5Tsm9w+Wv6lc/GidRA7cybxfSdOJGvXTnk7vJs3VTWxh4cahy++P/8kP/lETZOWI4d6pqFDQx3S89Zef5Frcd60nsNe77GzvcPOxJHPJe9w5v672FnYeqaMCoD2/D6d7T2WAGh/dQFw8+bNvHHjRoqX4OBgAmBwcLDm+6dk3+T2Se39Jbf4+d0gcIN16qT/XPGX69dvMDQ0+f127tT2mVK7aP2dannetJ7DXu+xM77DzrI48rnkHc78fxc7w2Lrmc6ePUsAPHv2bIZf25nOreV7/Pfff0sAtLM2UF+wLLLIIossssgii7MtNSHsoi4A7tmzh48fP07xEhISQkBVHWu9f0r2TW6f1N5fZlgc/Uz2ur4W503rOez1Hss7nPHvkSOvnRXf4ZTu64rvsa1nunHjBgHwxo0bGX5tZzq3lu+x6TuFlADajbQBzCQc/UzSfkraAGpB2gBqew75uzjjSRtA7c8hbQAdQ3oBZxKOHlBVelBKL2AtSC9gbc8hfxdnPFvPnFEzgUgvYKElGQdQCCck77DICuQ9FmklAdD+JAAK4YTkHRZZgbzHIq0kANpflgyAjq4uFSK95B0WWYG8xyKtJADaX5YMgEIIIYTIvCQA2p8EQCGEEEI4FQmA9icBUAghhEiHjOoF7EokANqfBEAhhBAiHTJqHEBXIgHQ/iQACiGEEOkgAVB7EgCBsQCMAP5Kwb5BsfvGX54ncYwEQCGEECIdJABqz9UDYHEATwE8QcoDoAFAbwCdLZYOSRwjAVAIIYRIBwmA2nP1ALgWwG4Ae5G6AJg/FdeQACiEEEKkgwRA7blyAGwMIBrAi0h9ACwIIHcKryMBUAghhEgHCYDac9UA6A7gFICvYz+nJgAaoaqMjQAiAKwCUDiJYyQACiGEEOmg0+kYFBREnU7n6FvJMlw1AA4EEA5zVW5KA+AQAHMBdATQGsBsqFLEcwB8EjlGAqAQQgghnIorBsD8AO4DGGaxLqUB0JZOUKWBoxPZLgFQCCGEEE7FFQPgQgDnAXharEtPAASAWwB2JbLNFwBDQkIYGhpqtcjk3UIIIYSwt7CwsAQZJCQkxKUCYFkAeqgq4FKxS2kAfwD4J/ZzvjSc908AxxLZ5gv1BSdYgoKCHP1OCCGEECKLCwoKsplD4EIBsAlUL14DbA/obIBq15daYQB+SWSblAAKIYQQwmGkBBAoAOBtG8sZAFcA/B/UsDAAUBJAhXjHF7RxzgFQ4XFIIteUNoBCCCGEcCqu2AbQFlttAPdBBTtLzwAsBTAcQH8AP0CVGh4DkDORc0sATIG9e8n27ckrVxx9J0IIIZxNREQEK1euzIiICEffSpYhAVDZC+C0jXX6eOsWQ5UWPgKgg+pMMgVAriTOLQEwBerXJwFy+HBH34kQQghnIwNBa08CoP1JAExGdDSZM6cKgA0aOPpuhBBCOBsJgNqTAGh/EgCTcfKkCn8A6eVFxsQ4+o6EEEI4EwmA2pMAaH8SAJOxZIk5AALk6dOOviMhhBDORAKg9iQA2p8EwGT07m0dAL/91tF3JIQQwplIANSeBED7c+kAeO4c+cMP5P79ie9To4Z1AOzTJ+PuTwghhPOTXsDakwBofy4dAD/4QIW6bt1sb3/+nPTwUPs0b67+DAzU9h4MBjIyUttzCiGEEJmZBED7c+kAOH26CnV16tjefviwueTvp5/Un56eKhhqZfRo0s2N3LdPu3MKIYQQmZkEQPtz6QC4ZYsKdblzk0Zjwu1z56rtFSqQjx6poAaoYKgFvZ7Ml0+dc/Bgbc4phBBCZHYSAO3PpQPg+fPmEr6bNxNu79pVbevaVX2uWFF9njtXm+sfPWq+/iuvaHNOIYQQIrOTAGh/Lh0Ao6PJbNlUAPvtt4TbK1SwDnzdulkHwvT6/HNzACxcWJtzCiGEEJmdBED7c+kASJKVKqkAtmCB9fpHj8zhzFTlO2+e+ly+vDbXfu016x7Gd+9xOFpeAAAgAElEQVRqc14hhBAiM5MAaH8uHwDfeUeFryFDrNcHByfs9BESYg5rDx+m77qRkeYp5kzL3r3pO6cQQoiMp9PpGBQURJ1O5+hbyTIkANqfywfAjz9W4euNN6zXm6pna9Qwr4uMVIEQIPfsSXiukBDyiy/IBw+Sv64pYHp4kCVLqp/nzUvfswghhMh4MhC09iQA2p/LB8Dly1X48vOzXt+mjVrfu7f1+po11fqpUxOeKyBAbcufn/z666TnDR4zRu378stk27bq5379Et//yy/JDh1SFi6FEEJkHAmA2pMAaH8uHwAtq3WfPjWv9/NT65Yssd6/Xz+1vnVr6/UPHlhX5wJklSpqthFb6tZV+4wbR06YoH5u2ND2vnv2mM/Zo0fan1UIIYT2JABqTwIgMBaAEcBfKdy/GIAfATwE8BjAZgD+Sezv8gHw4UNzuDp5Uq27fNm87vRp6/2/+852ieG+feYq3QEDzDOING2a8Jrh4aS7u7nd34YN6ud8+RKORxgRQfr7WwfL4GDNHl8IIUQ6SQDUnqsHwOIAngJ4gpQFwFwALgC4DeBDAEMBXItd8iVyjMsHQJIsUkQFqzVr1OeFC9XnF15IGMhOnjQHsXv3zOu/+kqtq1xZfd6xI/EQuWmTWu/lRep05D//JD4e4ZAhar23t5qxBCDLltV2NhIhhBBpJwFQe64eANcC2A1gL1IWAEcDMACoabGuAoAYAJMTOUYCIMkmTVSwCgpSn009g21Vt0ZFkdmzq+07d5rX9+ql1nXsqD4bjWS1ampdr17W5xg40LrjSUyM+Zy7dpn3O3jQPPvInDnkhQtkjhzq8yefkJcukR99pNoeDhig5hUWQgiRsSQAas+VA2BjANEAXkTKA+CfAEJsrP8VqmTQFgmAJPv2VaGqQwcV8HLnVp/XrrW9f+3aavu0aeZ1pjZ9lp1DTNXFOXOS9++rdUajGkcQIGfMMO9rCouzZ6vPOp15v3r11LRxJDllilpnqkK2XIYPtz2lnRBCCPvR6/UMDQ2l3vQXtUg3Vw2A7gBOAfg69nNKAqAbgEgA821smwRVMpjLxjYJgFQ9bAGyenVzWz43N3Noi69PH7VP27bqs16vqmgBcvt2837Pn5MFCliHxU8+MQe2U6fM+3burNb17Kk+L1qkPmfPTp49a94vKkp1LjGdIyCAfPtt82fLUCmEEEJkRq4aAAcCCAeQP/ZzSgJgAajOImNtbOsPFQDL2dgmAZDkL7+Y2+SNHq1+fumlxPc3hbOAAPX5wgVzALt+3XpfU+ArUUJNKWfab9Ag6/2mTjVfNybGPKRM//4Jr3/pkrrPX39V1b4Gg3maOoBcsSJ934cQQgjhSK4YAPMDuA9gmMW6lATAElABcKSNbe9DBcBqNrZJAKR1r19ThxBTe0Bbjhwx7x8ebu7FmzdvwirYGzfMPYJNS9u25ipdky1b1DYfH/L77809ii9fTtkzREeTzZur47JlI69dS9VXIIQQQjgNVwyACwGcB+Bpsc7uJYAhISEMDQ21WsLCwhz9+88wen3Cadn++CPx/S1nBAkOJj/9VP3cuLHt/Tt0MJ+3SRN1fHyXLpn3KV5c/dmlS+qeIyJClTQC5KRJqTtWCCGEcISwsLAEGSQkJMSlAmBZAHqoKuBSsUtpAH8A+Cf2c2LDuaSrDaCtJSipIrAsyNQJwzQeX3JteatXV/t+8YW513D8al2T48dVW77AwMTnEDYYzO0ITcuZM6l/jrFjzdXT0iFECCGEswsKCrKZQ+BCAbAJVFAzQJXmxV8MAGYncfwR2O4FvBPAv4kcIyWAsdq3NwevDh2S3//999W+nTqZ2+vFnzXE0oMHqpo2KabexYDq2JEW//5rPsf+/Wk7hxBCiJSTXsDpIyWAqhr3bRvLGQBXAPwf1LAwAFASaow/S0mNAzglkWtKG8BYpmpcgFy6NPn9580zd+4wHRcSkr576N49ZVXQyWnYMOXTxt24oTqQ/O9/Ms+wEEKkhYwDqD1XbANoi602gPugSgUt+UCV9N2B6gwyDGoWkOtQ4dIWCYCxVq9OfDYOWw4ftq6udXNTbfDSY9kyda7mzdN3HtP4g7lyJX5PMTFqzEEfH+txBIUQQqSOBEDtSQBU9gI4bWOd3sa+xQCsg/VcwAFJnFsCYKzwcNVGr2/flO3/9Kn1YMxly6b/HgwG8rff1LnT48kTc3vCZcvUushI8scfVUlnhw7mamvAvG+OHAmHsRFCCJE0CYDakwBofxIA06FyZXOIevddR9+NNVN1csOG5OLF5p7FlouHBzlihJrTuGRJ64GohRBCpIwEQO1JALQ/CYDpYDn48oQJjr4ba3v3Jgx8OXOSTZuS/fqpuYX//tu8v6na2N2dPHfOYbcthBCZjgRA7UkAtD8JgOlgmkIOIDdtcvTdWDMYyDJl1L15eqrQ999/ie8fE0NWrKj2b9dOrTMaVelgTEzG3LMQQmRGEgC1JwHQ/iQApsP+/eYAePGio+8mob/+IqdMUYNMp8T69ebnqVLF3DbQx4d89VVy/Hjr+YuFEEKQOp2OQUFB1Ol0jr6VLEMCoP1JAEwH0/RrHTtmjUGXjUayVq2EVcfx2w3u2OHoOxVCCJGVSQC0PwmAwsrly6qkb948FfTOnCE3biQ//FD1dDb1Gk7vmIdCCCFEYiQA2p8EQJFid++S5cqpEFigQMo6i/z2G7lyZdYoIRVCCJExJADanwRAkSqXL5MvvKBCYKlS5JUrie8bHq56HgPkhg0ZdYdCCCEyOwmA9pdlAmBMTAwvXbrE3bt385tvvuG0adM4evRo9u7dm23btmWzZs0YGBjI0qVLs2DBgixQoADz58/P/PnzM1++fMyXLx/z5s3LvHnzsnDhwixXrhxr1arFZs2asXXr1uzRoweHDBnC8ePHc8GCBdy6dStPnDjBu3fv0uhixVunTpG+virYFS6ceHWwaWgZU6cSgyFj71MIIUTmJAHQ/jJdALx58ya3bNnCGTNmsG/fvnz99dcZEBBADw8P08tic8mTJw9Lly7NwMBANm7cmE2bNuUrr7zCV155hc2aNeOrr77KV199la+99hobNWrEatWqsVSpUsybNy/d3d2TPHeOHDkYEBDAxo0bs0uXLpw4cSLXrVvH06dP8/nz547+yuzijz/IQoXM4wuuX59wn9dft+5Asm5dxt+nEEKIzEcCoP05dQC8ffs2t2/fzgkTJrBly5Z84YUXEoQvb29vVqlSha1ateLw4cM5f/58/vzzzzxy5Aj//fdfPnjwgHq9Pl33YTQaGRERwf/++4+hoaHcvXs3ly1bxs8++4x9+/blW2+9xerVqzN//vwJ7s/NzY2lS5dm8+bNOXToUC5evJh//vlnlgiGly6Zxw4EyOXLzdvCwsxT5Zk6j1SqRKbzVyGEEE4nIiKClStXZkR6J4QXcSQA2p9TBcBr167x22+/ZYcOHVi8eHGrIOXp6cmaNWuyT58+XLJkCQ8dOsTbt287XfXrkydPeOzYMa5evZrjx49n+/btWa1aNebMmdPqeTw8PFilShV269aNs2fP5t69e/nw4UNH336qPXxINmumAl6+fKrdH0l+/bVaV7Cg6klsCoM//ODY+xVCCK3JQNDakwBofw4NgI8ePeJPP/3EAQMGsFy5clYBqWrVquzZsycXLFjAI0eOMDIy0iH3qBWDwcDLly9z69atnDhxIt955x2WKlUqQYlhuXLl+N5773HhwoU8depUuksvM8KDByr8AeTIkWpdo0bqc9++6nPXrupz+fIys4gQImuRAKg9CYD2l+EB8NKlS5w+fTrr1atn1W7Pz8+PPXv25Jo1a3j37t0Mux9He/DgAYODgzlz5kx27tyZZcqUsQqEPj4+bNasGceOHcvt27fz0aNHjr5lm2bNUgEve3by4EHSzU193rtXbb9wQQ0iDZDff+/QWxVCCE1JANSeowJgMQB+Gi3FMvLG0yBDAuDFixc5bdo01qxZMy7Y5M6dm61ateL8+fN5/vx5p6vKdaSwsDBu2bKFH3/8MZs0aUJvb++4783d3Z21atXihx9+yG3btjlNINTpSH9/c1UwQBYtat3mr1s3tb5mTRkXUAiRdUgA1J6jAuA/AJYCWKbBcj6V164M4EcAlwA8A3APwH4ALVNwbHcARhuLAUDhRI6xWwD8999/OXXqVAYGBlr1xH3vvfe4bds2mTMxFWJiYnj8+HHOmzePbdq0YcGCBW0Gwu3btzu0EfKaNda9focMsd5+4oR526FD1tuOH5d5hoUQmZMEQO05KgD+oeG5jqZy/xYAdgAYD6AngMEA9kEFuV7JHNsdKux9AqBzvCV7IsdoGgCfPXvGFStWsFGjRnEBJW/evOzRowd//vlnCX0aMRgMPHPmTFwgLFCgQNz3nS1bNjZt2pTTpk3jiRMnaMjAwfeMRrJuXXPIO3w44T6mtoHt2pnX7dtn7iTSpQt561aG3bIQQqSb9ALWnqMC4NBU7JsNQKEktg9P570AgBuAkwDOJrOfKQDWTMW50x0AjUYjjx49yr59+9LX1zduXLzOnTvzl19+YVRUlIavhLDFFAi//PJLtmjRgl5eXnGBsHDhwuzatStXrlzJsLAwu9/LoUOqHWD16raredevV0HPw4O8fp18+pQMCLAuOcydm/zySxk4WgghXJWzdQKZD1U1/EXs544AHgEIBxACoLgdr70VwK1k9rEMgD4A3FNw3jQHwPDwcH711VesVq1aXNioUaMG58+fz3DTWCDCISIjI7l7926OHDnS6vfj5ubGevXqcdq0aQwNDbVbu8vr18nEmibGxJAlS6qg9/HH5ODB6mcvLxX6ihY1B8Fx4+xye0IIIZycswXAeQA6APAGUBBAJFQ7P3cApQB8peG1vAEUABAAVYoYA2BlMseY2gA+if1TB2ALgLJJHJPqAPjPP/+wf//+cR0T8uTJw/79+/P48eN2fBVEety6dYvLly9n27Zt6ePjExcIAwICOGzYMAYHBzM6OjrD7ufzz1XAy5XLHPa+/FJte/yY7NHDvH7t2gy7LSGEEE7C2QJgkMXPg6BK2yxL/T7T8FoLYe7EoQewDkCeZI5pB+A7AF0BvA1gIoCnAMKQeOlkigKg0Wjkrl272KJFi7jwUKtWLa5YsYLPnj3LoNdBaEGn03Hnzp0cOHAg/fz8rDrodO3alVu2bLH7mIsPHqgSP1PIa9jQurpXryf/9z9zyeCxY3a9HSGEEE7G2QLgRxY/rwRwLd52LQNgeQDNoMLcVgAbkHhP3qQ0gAqqCxLZnmQAfP78OZcsWcLKlSvH9Tht06YNDx48KMO2ZAFGo5GnTp3ipEmTWKtWLasherp06cLNmzfbLQz27m0OeBcuJNz+8CFZoYLap0QJ8vZtu9yGEEIIJ+RsAXB67J8+UG3/FlpsKwBz20B72AnVzjAtDgO4kMg2XwAMCQlhaGho3PL7779z1KhRcb1LfX19OWLECF6+fNnR74Swo8uXL3PGjBmsU6eO1UDUnTp14k8//aRpL+7bt8kOHcgtWxLf58IFMm9eFQJbt9bs0kIIIZxIWFiYVQYJDQ1lSEiIUwXAdwAEA/gLqlq1FICiUG30/gMwxo7X7g1VklcuDceuA3A/kW2+iDcVmeXi7+/PuXPn8smTJ45+P0QGu3LlCr/44gvWrVvXakifPn368ODBgxk2vMzGjeaq4v37M+SSQgiRKjqdjkFBQTLUWRoFBQUlmkPgJAEQACoCaA8V/ACgKlTni+4AutjxukOgAmDtNBx7FGpwa1t8AXDbtm3s1q0bc+TIERf85s+fzxiZtFWQvHr1KqdPn86qVavG/UdZunRpjhs3jufOnbPrtY1GskkTFQBr15ahYYQQzkcGgk6fzFACmBFsjSnoCeA4VIcO79h1LwCoAMDDYr+CNo59E6ojyexErueL2MGDAbB69epcv3499Zbzdwlh4fTp0xw1ahSLFSsWFwbr1KnDr776ig8ePLDLNY8dM5cCyjzCQghnIwFQe45oA9gawCaoHrU5MuqiFjYB2APgU6iZQMZCDQBtgPUA1cuhgp2fxboLUNW9owD0AbAYQDSAK0h8sGpfxPbo3bp1q3TsECmm1+u5Z88e9ujRI25oGdMA4Hv37tX8XeraVQXAkiXJ5881PbUQQqSLBEDtOaoTSAWoIVSOA1gBoDlSNqiyFtpDdfi4BSAKqu3eTgBvxdtvGdTwMJYBcBLUPYdDjQF4BWrswqRmKvEFwEeJjdorRAo8e/aMK1euZOPGjeNKBcuWLctp06bxlkbzul2/TubMqUJg587kd9+RO3aQ27eTc+eqeYeHDSOvXdPkckIIkWISALXnDL2A6wCYA+AUVJiq56gbsRNN5wIW4ty5cxw9ejQLFy5MAPTw8GCrVq24Y8eOdHcc+eQT6ynjbC0lS5Lnz2v0MEIIkQISALXnDAHQxB3Aa1BTwZ0AMAVAZYfekTYkAAq7iIqK4saNG9miRQu6ubkRAMuUKcOZM2emua3g06dk//5k48ZkuXKkj4+aTaRaNTVMjGnImMKFydOnrY+T/kxCCHuRAKg9ZwqAlnIAeBfAeqix+UYDKOnQO0o7CYDC7q5evcoxY8awYMGCBEAvLy/27NmTJ06c0PQ6p06p8AeoMPj662oQaYAsX56UYSyFEPag1+sZGhoqHSg15KwB0JIvgPeh2untBdAPQH6H3lHqSAAUGSYyMpIrV67kSy+9FNdWsH79+vzhhx8YFRWlyTXOnTOHvvhLsWLk339rchkhhBB2lBkCoKUiUD11DwHYBqAzzMO2OCsJgMIhjh49yh49esSNPVm8eHF+/vnnDA8PT/e5r14l+/QhP/qIXLFCDSadP78KgQUKkEeOaPAAQggh7CazBUBLZQCMB7DF0TeSDAmAwqHu3bvHqVOnsmjRogTAXLlycfDgwbx48aKm1wkNVSWAAJktG1mvHjliBPnTTzK4tBBCOJvMHAAzCwmAwilERUVxxYoVrF69OgHQzc2N7777Lg8dOqTZmIKXL5NlyyasGh40SJPTCyGE0EhmC4AvOfoG0kACoHAqRqORwcHBfPPNN+PaCb700kvctGmTJvMPP3+uxg8cP55s1MgcAg8e1ODmhRBCaCKzBcAQR99AGkgAFE7r7Nmz7N27d1w7wUqVKnH58uWMjo7W5PwGA1m/vgqAlSqRMo+7ECItpBew9pwtAHoD+AzALwB+i7cchJqZI7ORACic3u3bt/nRRx8xd+7cBMCSJUty7ty5fPr0abrPHRqq2gQC5KRJGtysEMLlyDiA2nO2ALgCwD0Av0MN+WK5HIIEQCHs6uHDh5w6dWrcLCMFCxbkpEmT0jywtMn48SoAZs+uhpERQojUkACoPWcLgFsBeCSx/feMuhENSQAUmc7z58/59ddfs3Tp0gTA3Llzc8yYMbx3716azhcZSVaooEJgzZpkOvOkEMLFSADUnrMFwOnJbK+fIXehLQmAItOKjo7mqlWrWLFixbghZEaOHMk7d+6k+lwHDpCenioEVqlC3rpl3vb33+TmzaQ07xFC2CIBUHvOFgDHAiiYxPZJGXUjGpIAKDI9vV7PtWvXskqVKnFTzQ0bNow3b95M1Xm2bSNz5FAhsEwZculSsmlTc0/hvn1JjUakEUJkIRIAtedsATAngM8BdAJQHoCfxVIGwGXH3VqaSQAUWYbBYODGjRtZo0YNAmCOHDk4cOBA3rhxI8Xn+O030sfH9lRyADlnjh0fQAiRKUkA1J6zBcCXAVwFYEhiSa/KAH4EcAnAM6hOJ/sBtEzh8XkALAFwF8BTqB7KgUnsLwFQZDlGo5Fbt25lnTp1CIDZs2fnoEGDUlwi+Oefaso4T0+yfXty3z7yvfdUAHR3J7dvt/MDCCEyFZ1Ox6CgIOpkLCnNOFsA/APAXAC9AXSPt/QGcF+Da7QAsANqGrmeAAYD2AfACKBXMse6QXVEeQJgHID+AM4AeAxVQmmLBECRZRmNRu7YsSMuCObIkYNDhw7l7du3kz328WPrziA6HdmggQqBPj6qTWBUlB1vXgghXJizBcC5yWxfZ6frugE4CeBsMvu1hwqKrS3WFQQQDuD7RI6RACiyPKPRyG3btrFmzZoEwJw5c3LEiBGp7ixy9y7p72+uDvb1Jbt0IadNIz//nJw+nfz5Z2knKIQQ6eVsAXBKMtuL2PHaWwHcSmafdYnsswhABIBsNrZJABQuw2g0cvPmzXHzDXt5eXHUqFGpGj7mwgXyjTdID4/E2wlOm2bHhxBCCBfgbAHwNQDvJ7H9gIbX8gZQAEAAgOEAYgCsTOaYCwC221j/AVT7xBdtbJMAKFyOqbNI1apVCYA+Pj4cP348Hz58mOJz3L9PLl9OvvuumlO4YUOycmVzCNy0yY4PIIQQWZyzBcCxALYB+BvAagBLLZaVAHQaXmshVHWuEWqGkXVQHTySEgHgGxvrW0AFwNdtbJMAKFyWwWDgunXrWKFCBQJg3rx5OWXKFEZERKTpfNHRZLNmKgB6e5MnTmh8w0II4SKcLQDeg+pgccXG8h+06QVsUh5AMwBdoap/NwAonMwxegDzbax/BSpIvm1jmwRA4fJiYmK4fPly+vv7EwALFSrE2bNn8/nz56k+14MHZLlyKgQWL06uXUumYhQaIYQQdL4A+BeA/ElsP2bHa+8EEJLMPmkuAQwJCWFoaKjVEhYW5ujfvxAZKioqiosWLWLx4sUJgMWLF+fChQsZlcruvufPk/nyWbcLLFmS7N2bDA6WGUWEyGoiIiJYuXLlNNceuLqwsLAEGSQkJMSpAuA7yWy3VcKmld5QIa5cEvukuQ2grSUoKMjR74QQDhEZGck5c+awcOHCBMCAgACuXLmS+lQkt6NHyRYtyDx5EnYSKVKEnDRJegsLkVXIQNDpExQUZDOHwIkCYHJsBSytDIEKcbWT2OdH2O4FvATJ9AKWEkAhEoqIiODUqVOZN29eAmDlypW5adMmGlOR3AwGMjSUnD+fbNKEdHMzB8H58+1370KIjCMBMH0yQwngvGS2H9HgGoVsrPMEcBxqZg/v2HUvAKgAwMNiv/ZQIfFdi3WmcQBXJ3I9aQMoRDLCw8P5ySef0NvbmwBYu3Zt7ty5M1VB0OTmTbJjRxUAc+QgT5+2ww0LITKUBEDtOVsbwMcActlY7w41R7AWnUA2AdgD4FOomUDGQg0AbQAw1GK/5VAdO/zi3cfh2PscD/NMII+QeNWxBEAhUujOnTscOnQos2fPTgBs0qQJDx06lOrzPH1KVqyoQmClSupzfEajKjm0nI1ECOGcJABqz9kCoBHAgnjrKkOV/BmhTQBsD9Xh4xaAKKjp5XYCeCvefsugev36xVtvORdwBIBgyFzAQmjq2rVr7NmzJz08PAiAb731Fk+ePJmqc5w6pUoAAfL991XJYGQk+fAhOW8eWaWK2laihNomhHBeEgC152wB8DqAmQCGQU3PNgZq7L8DAKpBzbiR2UgAFCKNzp8/zw4dOsQ1Vu7QoQPPnz+f4uPnzUvYQcSyjaBpqVOHTMOINEKIDCK9gLXnbAHQpB+AfwA8AzACKgxmVhIAhUinkydPsmXLlgRADw8P9uzZk9euXUv2OKOR7NMnYeDLk4ccNIhcutQ85VzHjtJrWAjhOpw1AAKqjd6IeOt+c8SNpJMEQCE08vvvv7NJkyYEwOzZs3Po0KG8c+dOssc9fkxevkweO0bu32/dJnDhQnMw7NmT/PhjskMH8v/+T403KIQQWZEjA+BwqJCX1HIJwMdQQ7R8CNXZIrORACiEhoxGI3ft2sXatWsTAL29vTlmzBiGh4en+ZyDBiUsJTRVDcug0kKIrMiRAfAfqGFXbE37Zmu5AW2ngssoEgCFsAOj0ciNGzeycuXKBMA8efJw8uTJaWojFBNDdu+ueg43b646jZjaCs6dq/29CyGEozkyAB4CUCqVx9hzKjh7kQAohB3p9XquWrWKAQEBVvMMR0ZGpuu8gwerAJgrF5mC5oZCCJGpOCoAegNolYbjbE0F521jnTORAChc0/Pn5KVL5J9/kgcPqkl6f/2V3LqV3LiRXLOGXLGCXLWK3LSJ3LlT7XfihGp8999/5KNHKe6ZER0dzcWLF1vNM7x48WJGR0en6fafPFFDxABky5bSQUQIkbU4KgAe1vBcWswOYk8SAEXWYzCQV6+SO3aQs2eTI0aQnTqRr7yi6lFtTdCb1iV7dtLfn2zYUHXV/fBD8ssvyR9/JP/4Qw3sZ+H58+ecPXs2CxYsGDfP8PLlyxkTE5Pqx9yyxXwbzZqRVauSvr5kjRrk5s0SCoXIKDqdjkFBQdTpdI6+lSzDUQHwCICSUIMsp2cpBeBERt54GkgAFJmX0UheuaLSzrRpZLduZK1apLe37bCWN6+aeqNZM7JLF3LkSHL6dHLOHHLBAvKbb1Sp3w8/kBs2qIT100/k99+TixerMPnZZ6or7uDBqjHeW2+R1auTBQsmHhKLFiVfe40cMkSd59AhPrl2jVOmTImbZ7hChQpcs2YNDQZDqr6CNm0Sv2yDBuTvv9vnqxdCmMlA0NpzVACcBTXThhbLrIy88TSQACgyD52OPHyYnDmTfPdd8oUXEqae4sXNYWvRIjWuypUrGTOScmSkqlY+cECFyGnTyPfeI2vXth1KixdnVMuW3NmsGf+XMyd9AFatWpWbNm1K8TzD9++rXsIjRqiBpTduJFu3tr7MqFGqI4kQwj4kAGrPmccBzCokAArn9ewZ+fPPqqSufn1V3WpKNe7uqq5zwADy229VdeujR46+48QZDCqIbt9OzpihuvVWr66eI/aZDG5uPOPmxm8ATvbz474FC2hMZYmgyeHDqgTQ9HU1aiRTyglhLxIAtScB0P4kAArncuGCqpJt3pzMmdN6eoz//Y+cNIncs0f1gsgKnj5VpZQzZpBt2lBfrJhV8d29bNl4s4B2FiYAACAASURBVGlTGr/5Ro0WnQp6PTlhgnnImMKFVR8XIYS2JABqTwKg/UkAFI6l06nOGoMGkWXKmMNPtmzkq6+q6t6//lIlaK7i5k3eW7KEwdWq8a94kwMb/f3VlCCrV5P37qXodDt3WjdRbN2avHHDzs8ghAuRAKg9CYD2JwFQZLznz9XQKp07k7lzm5NJqVJkv36q84VMqk6SvH79Okd1785OHh5cCPCaZamomxv58suqY8qJE0l2+71xQw0XYzrUx4ccN04VuAoh0kcCoPYkANqfBECRMZ4+VUOjtG+vRi82JZG6dVVP3LNnZdySJFy7do19+/ZltmzZWALglLJleadRIxp9fc3fZbFiZK9equeyjQBtNKrcXby4dSeRl18mly+Xr1+ItNLr9QwNDaVe5mbUjCsGwNoA5gMIhZqK7hqAdQDKpeDY7gCMNhYDgMKJHCMBUNiPTqcSR5s2pJeX9fgkX34pU1ikwdWrV9mnTx96enoSABvUrcuQadNoHDFCjXFo+o5z5FBFfkuXJqgqfvKEnDiRDAiwDoKTJjnooYQQIh5nDICvAnjDjudfD+AmgDkAPgDwCYDbACIAVE7m2O5QYe8TAJ3jLdkTOUYCoNCWwaBmzOjbl8yXz1xV2aSJGqfkv/8cfYdZwtWrV9mvXz9my5aNAFi7dm1u2bKFxosXya++Uu0nPTzMPaZfeUV9/xaN/4xG1Vv4nXfMIfDLLx34UEIIEctZAmB2AL0AhABYAGAhgKMA+gDIqfG1XgbgGW9dWQCRAFYmc6wpANZMxfUkAApt/PMPOXYsWbq0OU1Uq0Z+8YWEPju6ceMGBw8ezBw5chAAa9SowQ0bNqgBpR88UHW7rVpZ96g2VbtfvUpS9RZu29a8eeFC8tgxct06cu5cMjTUwQ8phHA5jg6ALwCYDOA4gNEA8llsywfgYwCnAEwBUNTO93IMKnQmxTIA+gBwT8F5JQCKtAsPVzNo1K1rPRDz6NHk6dOOvjuXcuvWLQ4fPpxeXl4EwBdffJGrV682TzEXEUGuX6+mxLNsN1ivHjlnDqOu3OT//md7RhF3d/KDDyTHCyEyjqMCYCCAVQD2AWgPwCOJfT0AdARwEMBqqDZ89nADwC/J7GNqA/gk9k8dgC1QJYiJkQAoUkevJ3/9lezQQbUzA1Snjh49yOBgtV04TFhYGEePHk0fHx8Caq7hxYsXW89RqtOpAQE7dzZ3yHFzo75xU84qt5AFcZcAWaQI6ednDoJeXuSYMSkefUYIIdIsIwOgG4A2AH6DCnIvpeEcLwNYA2AvgLax59RCV6hA1z2Z/doB+C52/7cBTITqSBIGoHgix0gAFClz/rz619+yC2mTJuSyZTJkixN68OABJ06cyPz58xMAixYtylmzZjEi/u/q2TPVO7tNm7hAb/TwYMxr/yO//576RxFctsz61+7tTX74IXnrlkMeTQinI72AtZdRAXAIVDXv1CSCUmqUAPA5gBMABqbzXBUBPIIqYUxLoGwAVS28IJHtEgBF4p48UdOsWc4p5udHjh9PXrzo6LsTKRAREcFZs2axaNGiBMD8+fNzwoQJfPDgQcKdHz8mV60i33qL9PQ0p73OnRm5aQenT4lhoULmVyFXLnLfvox/JiGcjYwDqL2MCoDvAPCyw3m9AbROx/FFAFwCcAWqPWJaHQZwIZFtvgAYEhLC0NBQqyUsLMzRv3/hCEaj+le9e3f1jz+gOhB06aKmYHOlGTmyEJ1Ox8WLFzMgIIAAmCtXLg4dOpRXYzuCJHD3Ljl/vmojaEp8hQoxut8grhkWwqIvGAmo5oTS3FO4OgmA6RMWFpYgg4SEhDhFL2BH8AVwEsA9ABXSea51AO4ncR3aWoKCghz9ToiMdP26mlHCcjq2l14iFy0iHz1y9N0JjcTExHD16tWsXr06AdDDw4NdunThqVOnEj/o4kU1SGD58nHvRkxAec7IO5l+uMqiRckrVzLsEYRwOhIA0ycoKMhmDoETBcDcAOoCCLDzdXIAOAA19l9dDc53FMA/iWyTEkBX9vSpqvJ77TU1Vp+p5f/IkeTffzv67oQdGY1G7ty5k6+++mrcX7RvvPEG9+zZQ2NiU4IYjeTRo+SQIbSsC/4NTflRkWX8aeUTnjypWg4I4UokAKZPZigBvA3Vnu4w1GwdnwF4C9p19gDU0C1bAEQBaJ7Efi9AlQxa9lAuaGO/N6E6kMxO5DzSBtDVGAyqivf999WEsACZLRvZurWagzc62tF3KDLY8ePH2bFjR7q7uxMAa9asydWrVzM6qXchOprcupX3m7WlDtlJgE/hzZXoytewi7Vq6PnFF1bjTguRZUkA1J6jxwGMrweA9+OtexUqXDXR6BpzoALbZgBdbCwmy2P387NYdwGquncU1CDViwFEQ7UhLJTI9SQAuopLl8igINLf31zFW7u2mh1CxvUQJC9fvsxBgwbFjSVYvHhxfv755wwPD0/yuEPbwvlF2UX807N+3Lt1/f/Zu+/oKKq/DeDPbgolCRBAqlIUpAgqgoCAdARpIgLSBEJHRJEfKj0UjVIERPGF0NGAKAoKIiJNFIk0EUIXAkaFUEJJQkLKPu8fN7uTTXZTt2a/n3PmkJ25M3M3TDZP7sy9Fw/yXUxidZxjmzZq5CCZa1gUVBIAbc/VAmBWBgN4wQbH2QPVymhtMVoFIAXmAXAmVG/mGKgxACMBfAzr4Q+QAFiwXb9OLl5s/iB/+fJqoGaZ3kFYcePGDb733numnsNFixbl6NGjee7cuWz3vXvkHP8eOIUxAQ+Zrrlf0JRDsIxN697hunXqyQMhCpLExEQGBwebj7cp8sWdAiAAfOjsCuSBBMCC5t49NYdXly7mQ3n060f+8ANpnBlCiGzcv3+fa9euZb169QiAOp2OXbp04Z49e6w/J2iUmsqUH3fyvzb9mKAvQgKMRxF+hn7s4LOTnTumculS8tYtx7wXIYR7cbUA+DLU1G9fQj1bl3GqtcUOr1H+SQAsCFJSyJ9+Us/1BQRo83e1b686echAzSIfDAYD9+zZw65du1Kn0xEAH3/8cS5btozx8fHZH+D2bf49bRnPlNbGk4xEZQYjmHUDIvnee3KJCiHMuVoA3AI1aPQ2qNuvNwF8DTXo89q0r92NBEB3ZTCQBw6oHplly5o/17dgAXnlirNrKAqgc+fO8bXXXjNNNRcYGMi33nqLkTkcBybu6Fme6T6RMUUrmK7ZnWjNEf6fc+mCeHlOUAhB0vUC4CfQWv0qApgI4CcApwB8AaC8k+qVHxIA3c2JE+SkSeadOapXJ6dNI0+fdnbthIe4c+cOFy1axEcffZQAqNfr2a1bN+7atSv728MkmZLC2C+38UStnqZexLdRjD9WGc67P4VLjxEhPJyrBcBHoXrWdoH58CvuTAKgO7h4kQwJIevU0UJfxYrkuHHk4cPyy1I4TWpqKrdv385OnTqZbg/Xrl2bH3/8MW/ncADxG2dvcN0zi3gE9UzX972HHyM//JCU8UiF8EiuFgAB1QLYAe7Z2meJBEBXdfUquWiReQ/ekiXJ4cPVOH4yJZtwMefPn+fYsWNZvHhxU+/hYcOG8ejRoznaPyyMfKbwUX6EMbyJQBKgwdub7N6d3LpVOjAJ4UFcMQAWNBIAXcnt2+TKlWS7dqoTB0D6+ZF9+6pfgPfvO7uGQmQrPj6eK1asYIMGDUyzjDRq1IirV6/mvXv3stz31CnyscfIQkhgL3zB3wOfo8E4S02FCuTEiWQOhqMRwpFiY2NZu3ZtxkpvJptxVADcDGAMAD8bHjMAwP/Sju3KJAA6W1ISuWUL2bMnWaiQNjNH167k+vUyaJpwa4cOHeLgwYNNg0sHBgZy7NixPJnFVIP37pFvvKE1fNcqeonra8/g7cAq2srmzcnVq+XnQ7gEGQja9hwVAP0AvAY1Z+48AJXzcayqAD6CGi5mLFy/6VICoDNYmVOVLVqQoaHkzZvOrqEQNhUTE8OFCxeyZs2aplbBpk2bcvXq1VaHkvnpJ/LBB7UfDx1S2Ro7+X2JPkz1TftjKSCAHDaMDJeOI8J5JADanjNuAXcG8CPUWH9Nc7FfcwCbAOwC0A2Zxwh0VRIAHSkqSnXmqFVL+61Wowb57rtkDofREMKdGQwG7tu3j6+88goLFy5MACxevDhfffVV/vHHH5nK375NLltGDhmi+kAZ7wY/WPQmfx/wCVlP6zjCx9I6jly75oR3JjyZBEDbc+YzgHUALAfwC4C+sNzr1xvAKwAOQM3NW89RlbMhCYD2lpJCfv+9uqVrfK6vdGnytdfIgwel1UJ4rJiYGC5atIh169Y1tQo2aNCAS5YssdqD+OBB8xGQBg8m7+0/So4eTZYooT1C8dJL6ucuJcXB70p4IgmAtucKnUBKA5gKdXt4EoCSactkAH8AmA6grLMqZwMSAO3lv//IWbPISpXS7l/pyE6dyM2bpTOHEOkYDAaGh4dzyJAh9PPzIwAWLlyY/fr1486dO5maocf7rVsq36Vv+Dt5kmRCArluHdmmjflwSZMnkxcuOOfNCY8gAdD2XCEAGvlAtfb9CuA3AIMA+DqzQjYiAdCWUlPJH38kX3yR9PJSv4DKlyenTCEvXXJ27YRweXfv3uWKFSvYrFkzU6tg5cqVGRwcbDbbiMFAfvIJ6eurTXe9YkW6kWIiI9Xg6A89pIXBVq3Izz9XvUyEsCHpBWx7rhQACyoJgLaQkKAeVKpZU/tl0749+c03qpevECLXzp49y4kTJ7JChQqmMNi6dWuuWbPG9Iv2yBHykUe0H7tSpdRtYdOoSSkp6o+yXr20tFiiBPnqq2pnIYRLkgBofxIA8+P6dXLmTLJMGfWLpVgxcvx4ud0khA2lpKRw27Zt7NmzJ319fQmAfn5+HDBgAHfu3Mlbt1LZr5/WQcS4lC2rZk00NRzeuEEuXEjWrasVevJJ8uOPyZgYZ75FIUQGnhgAG0DNORwBIA7AZQAbAFTP4f7FAYQCuJa2/25k3TlFAmBenD+vWhCKFFG/RCpVIufPJ+X7KIRd3bx5k59++ikbN25sahV86KGHOHHiRO7bd5pLlqjGd2/vdMPH6MjnniPXriVjY6nuHx88SI4Yof5oA9QYnL17q7FnZJYdIZzOEwPgVwD+BbAQwGCojidXAMQCqJ3NvjoA+wHcBTAFwCgAJwDcAfCIlX0kAObGH3+oaamMTQ3166vBmmWKKiEc7syZM5w8eTIrVapkCoNPP/00Fy5cyOPHrzIkhKxc2bxVsGhRMigo3VCb8fHkmjVqYGljocqVyenTycuXnfjuhPBsnhgAG0MNL5NeNQAJANZms28vAAYAL6ZbVxpADIDPrewjATAnjh9Xwc/4C6JTJzUfrwzhIoTTpaamcvfu3Rw4cCD9/f0JgF5eXmzfvj1Xr17Lb76JZb9+Kvylz3gHD2Y40Llzaqq58uXNmw6/+IJMTHTGWxPCY3liALTmMNRQNFnZAOA/C+uXQLUg+ljYJgEwKxERaoo242+NF15QrYBCCJcUHx/PL774gp07d6a3tzcBsGjRouzTpw83bvyen36axIAAbbjAjz+28HdccrKanrFbN+1ecsmS5Jgx5LFjTnlfQngaCYCaKAA/ZFPmHICtFtYPBpAK4DEL2yQAWnLqlHoeyHirt3Nn8vBhZ9dKCJEL169f5+LFi9mkSRPTLeJSpUqxd++RfPjhnwmkmvqBbNhgZczoq1fJuXPNe/g/9RS5eLF0HBEmiYmJDA4OZqK0FNuMBEClP9St3YHZlIsFsMzC+uehAmA7C9skAKb3zz/kgAFa8OvY0cJ9IiGEu7lw4QJnzZrF2rVrm8Kgn9+DBMYTOELAwOrVVSfhq1ctHMBgIH/7jRw6lPT3V58PhQuTffuSO3dKxxEPJwNB254EQKAmgNtQU9LpsimbAtWDOKNWUAGyq4VtEgBJNTDszJnaQ0Lt2pEHDji7VkIIGzMYDPzzzz85YcIEVq5c2RQGgUcJBBM4RS8vskMHNWZ0XJyFg8TFkatWkc8+q7UKVqlCzpghHUc8lARA2/P0AFgWwAUAkQDK5aB8nlsAw8PDGRERYbZER0c7+//f/gwG9YC3cbq2GjXU/KFCiALPYDDwt99+45gxY1i6dNl0YbAugXcJnKefH9m/vxodxmKfr7NnyQkTzDuOtGunRgdISHD4exLOIQEwf6KjozNlkPDwcI8NgMWg5hq+DqBGDvfJ8zOAlpbg4GBnXxP2dfgw2ayZ+tAuXpxcsEBm7RDCQyUnJ/Onn37i4MFDGRBQMt1n4VMEZhOIZKtW5J9/Wj2Amn6ke3et40iJEuTo0WrGERkxoECTAJg/wcHBFnMIPDAAFgKwD6pFr2Eu9vsSlnsBhyKbXsAe1QJ49aqaK0qnI/V6ctQoNaOHEEKQTEpK4rZt29i370AWLVo83S+ihtTp5rJ//0uMisriANeuqYHhH3tMu0X8xBPqAUP5rCmQJADmj7QAKnoA3wK4D6B9FuXKQbUMeqVb1wuqpa97unXGcQDDrBzHc54BTE0lly5Vf5UDZOvWanw/IYSwIjExkd999x3btu1Hvd7fLAzWqTOXYWGR1hv3jDOOjBypzTji40P26KEeNZEB5AsMCYC254nPAC6E6rCxGUA/C4vR6rRyldKt0wP4DWrmj6nQZgK5DetTyXlGADxxgmzSRH0AV6hAfvWV3JIRQuRKXFwCR47czCJF+hEIMIXBQoWeZuvWc/jjjxet7xwfr3qVtGmjtQpWqKCeHzx71nFvQthFSkoKIyIimGJxLCGRF54YAPdAteJZW4xWQfX6rZRh//RzAccC2AVPngs4Pl6N7O/trW75jhkj8/UKIfIlOZlcvz6Bjz/+LYH+BIqZwmCRIk+xffsQ7t6dRaiLjFRTzaWfp65pU3L5cvLuXUe9DSFcmicGQEcruAFw+3by4YfVh2u9ejKenxDC5s6dI6dOTWTFit8RGECghCkMFi1alz16TOexYxE0WLrjkJpK7tpF9uunxhQ0TlY8YAC5Z4+MLSg8mgRA+yt4ATA6Ws3iAZB+fuphbHnWRghhRwaD6uz75pv3WarUDwSGEihlCoNlytTgW29N4uHDhy2Hwdu31TPKjRtrrYJVq6qxBSMjHf5+hHA2CYD2V7AC4JdfkqVLqw/Prl3Jv/92do2EEB4mNZXcu5fs1SuZOt0uAqMIlDOFwUqVKnHs2LHct2+f5WfGTp0i336bLFdOC4OtW5OffaYeaxHCA0gAtL+CEQCvXSN79lQflKVLq4k9hRDCySIjyTfeIIsUSSHwK4Fx9PGpkq5lsAyHDx/OH374gffv3zffOTlZ9Rbu0UP1HgbIgAByyBDy11+lI5so0CQA2p/7B8D0rX4vvaRuAQshhAv57z9yxAjSy4sEDASO0td3CkuU0OYmLlKkGJ9+ug/fe28DY2IydAa5cYP8+GOyfn2tVbBaNfLdd+VOhwuQXsC2JwHQ/tw3AF67RvbqpT4IS5VSU7rJX8RCCBd2+jTZpw9ZqJCW44DTBEIINEw3zmAhli7dib17L+PZsxn+qP3zT3LcOLJMGW36ubZt1TAzcovYKWQcQNuTAGh/7hkAv/6afOAB9eHXvbua3UMIIdzE7dvkihXq0b5y5cgqVchatcjKlaMILCbQloB32i9AHcuUacaxY+fx/Pnz2kGSkshvvyW7dct8i3jfPvmD2IEkANqeBED7c68AeOcOOWiQ+qArWVJNuC4fckKIAuTaNfKbb8jBg2NYpMhnBLoT8DO1Dtau/RgnTZrEgwcPMtU4VMz16+SiRea3iB95RHoRO4gEQNuTAGh/7hMAf/1VDYsAkM8/T1654uwaCSGEXcXHk6tXk088cY/AFgJD6e1dxhQGK1SowFGjRnH79u1MTExUO504QY4fT5Ytq4XBFi3IlStloGk7kQBoexIA7c/1A2BSEjllCqnXq8FSFy+WVj8hhEdJTlaTh+j1JJBCH5/9LFv2LRYr9qgpDAYEBLBnz578/PPPGRMTo/Ui7tmT9PVVQbBIETXw9I4dpHRYsBkJgLYnAdD+XDsAnjtHNmyozeZx6pSzaySEEE7z66/mM8ip5RSB9+nt3ZiAjgDo5eXFVq1aceHChYyMjCRjYsglS8hnntF2fPBBNRexfK7mmwRA25MAaH+uGQANBjI0VE2LpNOR77xDZhwjSwghPFBcHLllCzl7tnok+vHH04fBKwRCCXSmTlfI1DpYp05dTpo0ieHh4Uw9c0bdValUSdvx6afVMDPXrzv77bmlxMREBgcHa7fhRb5JALQ/1wuA16+TL7ygPpQqVVJD6gshhLDqn3/U38wvvKA6AqtcF0fgGwIDCZQ2hUFv77IsVmwIWzz7DQ/O/p6GQYNIf3+1k7e3mkVp40ZSwoxwIgmA9udaAXDnTrJCBfVB1KcPeeuWs2skhBBuJSmJ/OUXcupUNbWw8blBYD+Bdwhog08Dhenn14n9ui3k5ZCPyPbtjTuQgYHkyJHk/v3y3LVwOAmA9ucaAfD+fXWbV6dTf4muXSsfOEIIYQMxMapBb8oUMiSE/OQTMjj4Lz788AICrdKNNwgGBj7BkV1f5/4XX2NslTrmQ8pMn07+9Zez347wEJ4YAP0AzADwA4CbAAwABuRw34Fp5TMuqQDKWNnH+QHw3DmyQQP1IdOwoXzACCGEg5w6RY4adYt+fhsIvEKgVLrWwdJ8Al34ITrzuo82pEzsE014Z/b/MfX6TWdXXxRgnhgAK0OFtkgAu6DCW24CYCqASQD6Zlh8rezjvABoMKhxqfz8VMvfpEnq3oUQQgiHSkggw8LIZ59VQ8zo9ROp09UxhUEvePE5PMHP8BTjUIQEeB8+3FaoG/9X9Wv27JrIrVvlxo2wHU8MgD7QWuvqI/ctgKkAnsrF+ZwTAG/d0ubxrViR3LPHsecXQgiRrdOnIzl69GJWrdqROl1hAqA/wFdQhjvwEFOhIwHGoASXYDgHP7qPm75OlSEGRb55YgBMLz8B0B+APgf7OD4A7t+vDWTVvTt544bjzi2EECJP4uPjuWXLFg4ZMpLlyz+kZiIB+I6XL094FzfdIo5EZc7xmcRXGpziuHHk7t3Orrn9xcbGsnbt2oyNjXV2VQoMCYB5ewbwbtq/iQC+BVAti30cFwBTUsh33yW9vNSMHkuWyP0CIYRwQwaDgcePH2dISAibNm1KvV7POgDfB/g3fExh8DCe4pv4kMM6/ct//nF2re1HBoK2PQmAuQuAPQGsANAfQFeoziRxAKIBVLSyj2MC4D//kK1aqQ+FOnXIiAj7nk8IIYTD3Lhxg2FhYezTpw8Di5dgC4DLAd5Ou0WcCh1361twe++VvBt129nVtTkJgLYnATB3AdCSplC3hT+1st3+AfC778hSpVT4e/VV8t49+51LCCGEUyUnJ/OXX37hhAkTWP+xx9gd4DcAE9NaBRPgzV/Kt+Mfwd8w8U7BGGxaAqDtSQDMfwAEgN8AnLOyrRgAhoeHMyIiwmyJjo7O3/9eQgI5Zow2oOg339jmqhBCCOE2/v77by5YsIRPVu7AofDlnnQTGd9EIX5RrB3ndd7KJZ+mcscO8vx595v5UwJg/kRHR2fKIOHh4RIAkf8AuAHADSvbisE05pP5EhwcnPf/zVOnyCeeUD/kzz5L/v23zS4UIYQQ7un69QSOH/8jG5YL4tsoxWPpwmAUfDkHz/JJrKcOqaxcmWzZkhw1yvWfGpIAmD/BwcEWcwgkAOY7AB4CcNrKNtu2ABoM5NKlZJEiajqh6dMp4wEIIYTIKCaGXLnyPF9tPokLi1ZjZNrzggR4Cl6cjCf5MBYQuEa9ngwKct22BOkFnD/SAphZVgGwHIAaALzSrSttoVzHtGPMt3IO2z0DePOmGtYFICtVUpNRCiGEEDmQmJDA3xd8xD2PPckbei9TGAwH+AYqshxG08dnF6tVS2Tt2uTjj6upim/KhCQFkqc+AzgawGSojhsGABvTXk8GEJBWZnXatkrp9jsHdbv3LQDDASwFkAQ1q8gDVs5lmwC4dy/54IPqB7ZXLzXQsxBCCJEXSUm8vnYtzz/zDO95e6f1JAZ3AhwCH5ZAGwIfEjjOMmUM/PprZ1dY2JqnBsBIqJ67lhZj4FsFIAXmAXAmgCMAYqDGAIwE8DGshz8gvwEwKUnNMK7TqSndVq6Usf2EEELYTnw8U7/4gjdatGJSWsvgfYCbAb4MsCjKEOjLBg1W8uhRF71HLHLNUwOgI+U9AF68SDZurFr9nnqKPHvW9leAEEIIYXTrFrlyJVNat6ZBrycBxkHP9QC7AvQFWL78oxw16lV+/fXXjImJcXaNXd7eveTx486uRWYSAO0v9wHQYCDXrCEDAlT4Gz/e/frsCyGEcG9Xr5Iff0xD06am5wVvwZcr4Md2AL0A6nQ61q9fn++88w537NjB+Ph4Z9fapfzyi/rWFS1KXrrk7NqYkwBof7kLgDdvkj17qiumfHnyxx/tewUIIYQQ2bl8mbHT5vBi4FOmMBgNf36Kh9naK4C6tCFF9HpfVqrUklOnzuJvv/3G5ORkZ9fcqTp1Mn27+OKLzq6NOQmA9pfzALhzJ1mxorpSuncnb9yw/xUghBBC5MLOxWe47MHpPIWapnTzDx7gfDzLRmhMoIhpjLmAgAB27tyZCxYs4PHjx2nI4zPsiYmJDA4OZmKi+8xscuKEFv6My7Ztzq6VRgKg/WUfABMSyHHj1NXh70+uWiUdPYQQQri0WzEG7pz/J39sMInXij1sSjmRqMwP0IdPew1ntUea0tvb2xQIH3jgAb788ssMDQ3lxYsXsz3H3btkeDj56af3CLzH0NB7Nvn1eOYM2awZOXSoCmr28Mor6ltSty75/PPq60ceUb/yXYEEQPvLOgAeP66uDoBs0oS8cMGxV4AQQgiRXwYDeegQ+b//8X65h0xh8ByqcRbe4tOFFrNsmXEsX/5JjL6XsAAAIABJREFUs1koqlatyqFDh3L9+vVmkyP8+SfZvz+ZNkKN2TJgQP4fi+/SxfyY7dqR+/fn83uQzuXLWt0/+0xNv+frq17PmmW78+SHBED7sxwAU1LIefPUFeHlpa4ID39WQgghRAGQmsr4Hb/yx5qv81+UTzf7SE0GI5iP+/zKli2/ZP36I+jnV80sEBYrVpcPPTSWwFYCiaaAVqlSKoFw0+vWrcnbt/NWvfS3ZqtU0b729SXPnbPNt2DsWG3OhqQktW7qVLWuSBHVAulsEgDtL3MAvHBBzd8LkNWrk7//7rwrQAghhLCTxPgUXlqzlxefH8XYog+Y0tZx1OEUzOSjOEPgEoEVBPoSKJsWSvSsU+cWw8LIuDgtrLz7boIpsD32GLl1K5mamrs69e+v3ZpNTVWP31etqtZ17Zr/93zzphq2FyA/+khbHx+vnadmzbwHWFuRAGh/WgA0zuNrvDLGjFFXhBBCCFHQJSfz/radPNtiGG97lzSFwesVH+efL7/LFRPOcuxYA3v0iOCECWFmz/oZw8qdO3f45ZdkoUJay121aipo5aSv5cWL6qYbQIaFaeu3bNGOt2NH3t6ewUB+8416zg8gS5ZU4TW9I0dUCyCgeginpOTtXLYgAdD+VAA8c0Z7CvShh9SfHEIIIYQnSkpSw5wNGUIGBmrp68knyZAQ9dBcOukDIKkeN+zcWU2SZdw1IIB8441Mu5oZPVqVffhh86euDAbyuee0lsWcPpFlMKjn/TZsIFu2NL+dvHat5X3Wr9fKTZyYs/PYgwRA+1MBsEQJ9b89aJDz232FEEIIV5GURP7wAxkURBp/VwLkv/+aiqSkpDAiIoIpGZrMzp8nX39dmzcBUKGwQwfyq6/MO4tcvUoWLqzK/N//Za7GyZNa6+Ann2jrDQby4EHy7bfJ2rXJypXJWrXUBF3lymXupPLSS9n355wwQSsfEuKclkAJgPanAmDp0vxi/Hg+++yzLFasGPV6PVNz+eBCixYt6Ovry4CAAPr7+zMgIID/Z+kqFkIIIdzR/ftqsLwZM3K125076jZwtWrmYax0abJbN/XY/YMPqnVly1ofimXMGK01sUkTskEDbb+sluLF1U2+vXtzVt+UFPNBops1I//6K1dvOd8kANqfCoAXLnDHjh384osvuHLlyjwFwJYtW3LatGl2uhSEEEII95aaqvLjSy+RPj6Ww9qHH1rf/+ZN9eyepf2efJJ891317ODy5eSiReTq1eSpU7nviEKqEPrmm9ptbD8/cvHivB0rLyQA2l+mXsB79+61GADDw8PZsmVLlipVilWqVOHUqVPNmrtbtmzJqVOnOubKEEIIIdzYtWvkwoVqSJaQEBXadu7MPmD98YcqP3eu2j80NOvnCvNrzx51W9kYNBs3VuMg2psEQPvLUQA8c+YM/f39+eWXX9JgMPDvv//mk08+yZCQEFOZli1bsnTp0ixZsiRr1arFCRMmMC5jFyMhhBBCuJU7d8iRI7XWQC8v9ZygPZ8N9MQA6AdgBoAfANwEYAAwIBf7FwcQCuAagDgAuwHUy6J8jgLg66+/zr59+5r954SFhbFatWqm1wcOHOCtW7dIksePH2e9evXYu3dv+10dQgghhHCYAwfIxx/XWgNfeIG8d88+5/LEAFgZKvRFAtgFIBU5D4A6APsB3AUwBcAoACcA3AHwiJV9chQAn3/+eRYpUoSBgYGmpXjx4ixWrJjV/7y9e/fSx8fHrSbHFkIIIXLLWi/ggigpiZw8WQuBTZqQN27Y/jyeGAB9AJRJ+7o+ctcC2Cut/Ivp1pUGEAPgcyv75CgABgUFcciQIbn6z/v555/p4+PDBCfMLB0dHc3g4GCzuRuFcCdyDYuCwFOu44zjAHqC0FBSr1chsEYNNUB1+sGx88sTA2B6uQ2AGwD8Z2H9EgCxUOEyI1MATE1NZWJiIn/88Ufq9XrGx8czMTGRBoOBhw4dYvHixfnVV18xKSmJqamp/Ouvv7h9+3aS6od8+/btjE+bOSQiIoINGjRgjx49bHc15EJERAQBMCIiwinnFyK/5BoWBYGnXMeeGABJNUOJceYQgKxXT/VC3rlTDSj9ySfkF1+ocQcNBjXzyOrVZIsWpL8/OX++9dAoATB3AfAcgK0W1g+GupX8mIVtpgC4evVq6nQ66vV66vV609c///wzSfLgwYN87rnn+MADDzAwMJD16tVjaGgoSfLy5cts2LAhS5QowYCAAFavXt2pnUA85UNHFFxyDYuCwFOuY08NgKTqlWycSCyrpWRJFfoyrh8xQt1WzkgCYO4CYCyAZRbWPw8VANtZ2PYwAP6VyxEec9usn5vyOSmbXZmC+KHj7Fsp9jq/LY6b12PY6zqWa9g6Z17Hcg3LZ7EtWHrPjgqA9vz5ye+xjx0jX3wxmjpdMH19o1mxIlm3rvnkKYBqMXzlFbJPH21dixbRfOcdy99TSADMkRQAn1hY3yrtOF0tbGsIgOHh4bn6j87tD3VuyuekbHZlCuKHjrPfk73Ob4vj5vUY9rqO5Rq2zpnvS65h+Sy2BUvvyVEB0J7fT1texydOaMcwGNQ4hevXq9vDxtlmDQY1cLUKgWq/oUMjTDPsSQC0fwtgQwBctGgRd+3aZbb88ccfjIqKsrjs2rWLALhr1y6rZfJaPidlsyuT2/q5w+Ls92Sv89viuHk9hr2uY7mGHX8dOfPcBfEazmlZT7yOLb2nU6dOEQBPnTrl8HO70rHzcozFi6NYqNDGtLC3nHr9LrZtu4tLl26WAAj7PgP4EtQ3WBZZZJFFFllkkcXVlqfggXIbAL+E5V7AobDeC7ghAO7cuZN37tzJ8RIeHk5A3Tq2dfmclM2uTG7r5w6Ls9+Tvc5vi+Pm9Rj2uo7lGnb8deTMcxfEazinZT3xOrb0nqKiogiAUVFRDj+3Kx3bltex8XsKaQHMpByAGgC80q3rBdXS1z3dOuM4gGFWziHPALoJZ78neX5KngG0BXkG0LbHkM9ix5NnAG1/jKy+p/CwADgawGQAn0IFwI1prycDCEgrszptW6V0++kB/AY188dUaDOB3AZQ3cq5pBewm5BewLY/hvQCdjzpBWzbY8hnseNJL2DbHyOr7yk8LABGQrXkWVqMgW8VVK/fShn2TT8XcCzUdHK5mgu4ICiIHzrCs8g1LAoCT7mOPWkqOEfx1ADoSBIAhXBBcg2LgkCuY5FXEgDtr0AGQGffLhUiv+QaFgWBXMciryQA2l+BDIBCeJKEhASn94yURRZZZMnNkpCQkOXn2p07EgDtTQKgEG4sISGB5cqVc/Y4XbLIIossuVrKlSuXZQiUAGh/EgCFcGPGD0l7jz8miyyyyGKrxTjG35071rPHnTsSAO1NAqAQbsz4ISk/w0IId5GTzy0JgPYnAVAINyYBUAjhbiQAugYJgEK4MQmAQgh3IwHQNUgAFMKNSQAUQrgbCYCuQQKgEG5MAqAQwt1IAHQNEgCFcGMSAIUQ7kYCoGuQACiEG5MAKISw5s6dOzx69Ch37NiR5Tpn1Cu7zy0JgPYnAVAIN1aQA+DWrVv5/PPP09vbmwEBARwwYAAHDRrE3r17s0mTJhw3blyBfN/CuYzXXaFChejn58ebN29aLVu3bl3qdDo2a9aMH3/8sQNrmTMHDx5kx44dqdfrs1xHkhMmTGCNGjV4//59u9dLAqBrkAAohBsryAHQqHnz5uzcubPZOoPBwAkTJrB69eq8evVqro85duxYW1VPFFBvvfUWS5QowcWLF1vcvm/fPvbo0YP+/v4OrlnuXLhwIVPYs7Ru2rRprFu3rgRADyIBMAdiY8mffyaTk51dEyHMeUIAbNmyJbt06WJxW8eOHdm+fftcH7N+/fr5rZYo4KZPn85hw4axUaNGFrcvXryY06dPZ0BAgINrljuXLl3KFPYsrXMkCYCuQQJgDgQFkQD5f//n7JoIYc7TA+CWLVuo0+l44MCBHB0rLi6OISEhTv3lJ9zDjBkzuG/fPup0Op47d85sW0JCAlevXi0BMI8kALoGCYA5UKOGCoD9+jm7JkKYy2kATE4mo6Ics9i6pTyrAPjvv/9Sp9PxnXfeIUkePXqUwcHBfP/999m3b19+8sknZuVDQ0PZoUMH6vV6BgUFMSgoiAcPHszRvsKzzJgxgyT58MMPc+rUqWbbNm7cyOvXr1sMgFldR3PmzGG1atWo0+k4cuRIkmT//v2p0+nYpEkTHj16lPPmzWOZMmVYqFAhzpgxg3PnzmWZMmUYGBjIpUuXMiYmho8++ih9fX1NdYyPj+err77KyZMnc9y4cZw5c6bpnDkJgHv27GHjxo1ZsWLFHL2PsLAw1qxZk9WrV+eRI0cYEhLCCRMmsHPnzrx7926231sJgK5BAmA2kpJIb28VAJ94wtm1EcJcTgNgVJS6hh2xREXZ9j1mFQDv379PnU7Hrl27kiQbN27M119/nSQZGxvLihUrcsOGDWb77N2712LrR072FXnQpQtZu7b9FivXRn4Zw1VwcDCrVq1qtu3TTz8lSYsBMLvr6O7du3z44YcZGhpKkly6dClXrlxpdozVq1fzkUceMb1etWoV27Zta3p9+PBhzpkzx/S6U6dOnD9/vul19+7duWLFCpI5bwE8dOiQ2brs3sfmzZtZqlQpLliwwLSudevWZvWyRgKga5AAmI0zZ7RfbIUKkSkpzq6REBpPD4ApKSnU6XTs1KkTSXL+/PkMCwszbe/duzeHDx9uto+1AJiTfUUeuHkAvHDhAnU6Hfft20eSvHr1Kjdt2kTScgDM6TUYGBjIgwcPcuLEiZnOfevWLfr6+vLYsWMkyQULFjAgIIAxMTEkyUWLFvHWrVskyQMHDlCv1/P27dum/cPCwkyBMacBMOO67N6H8efon3/+Ma0bMGAAhw0blun9ZCQB0DVIAMzGt9+a/3I7e9bZNRJC4+m3gK9fv06dTmdqqSDJkydPMiQkhCEhIWzYsCGDgoLM9rEWAHOyr/Ac06dPN33dtGlTDh06lCS5YsUKU09Za88A5uQ6evPNNxkYGMjY2FiL5+/QoQOnTJlCkpwyZQq7du3KVatWkVStkkbz589noUKF+NFHH3HhwoVcuHAhp06dyldffZVk3gNgdu/D0s/RoEGDcvQzIwHQNUgAzMacOeYB8OuvnV0jITSe3glk586d1Ov13LVrF0n1S7VJkya8cOECScu/kDL+4jK27ORkX+E5jC2ApLpNW6JECd6/f990+5e0HABzeh0tXbqUVatWtTrMzPLly1mrVi1GRUVx+fLlXLNmDTt16mR6bbRgwQJ6eXkxNTXV4nHyGgCzex8SAN2fBMBsDBliHgDTPVsrhNN5egDs1asXmzdvTpL85ZdfqNPpGBkZadrev39/BgUFcd++fbxx44apnF6vp8FgIEnOnDmTv/76a472FZ4jfQC8ffs2CxcuzIkTJ/K3334zrc8YAHN6DZ47d45z587l4cOHWaJECV68eDHT+W/cuEFvb2+OGDGC169f561bt+jv78+QkBBev37dVO7IkSPU6/U8ceKE2f7GeuYlAObkfUgAdH8SALPRtKkKfjqd+vfll51dIyE0nhAAW7RokSkApqamcvr06axatarpGaRt27ZRr9fzypUrJNUv7Tp16rBv374MDQ3ltWvXSJJXrlyhj48Pz507x7i4OC5evDjH+wrPMWDAALPXPXv2ZI0aNczWTZs2zWwg6Oyuo+joaN68eZOdO3c2tdhNmDCBzZo1Y4qFB8zbtGnD1q1bm163b9+eHTt2zFSuT58+HD16tOn15cuXOXfuXJLkxYsXqdPpzMpnty4n72P37t2ZAuDAgQM5aNCgTPXLSAKgZQ0AfAIgAkAcgMsANgConsP9iwMIBXAtbf/dAOplUV4CYDZKl1bBr1kz9W+dOs6ukRCaghwAt27dyk6dOtHX15eBgYEcMGAAg4KC2KdPHz7zzDMcM2aM6aF4o5CQEHbr1o1z5szh+++/z4MHD7JWrVqcPXu2WblFixaxa9euHDduHOPi4nK1ryjYtmzZwkaNGlGv17Nx48bcunUrSfLHH3/kBx98QFJ1DOnZsydLlSpFvV7P5s2bm4ZJyeo6euedd1i6dGkWKVKEp06dIknTtGwNGjTI1Bt45cqVpt7CJLlmzRqz10YpKSmcNGkShw8fzokTJ/L9999namoqf/rpJ9N7adOmDf/880+L67Zt22Za165dO168eDHL9xEWFsY6deqYjhEREcFhw4YxMDCQgYGBHDJkSJbfYwmAln0F4F8ACwEMBjAJwBUAsQBqZ7OvDsB+AHcBTAEwCsAJAHcAPGJlH48OgFOnkhUqkGnPymZy86Z263fBAvWvj48aGkYIV1CQA6AQomCSAGhZYwDeGdZVA5AAYG02+/YCYADwYrp1pQHEAPjcyj4eHQDffluFurQRJDL57Tft9m9kpBYGT550aDWFsEoCoBDC3UgAzJ3DAA5lU2YDgP8srF8C1YLoY2GbRwfAjz5Sge7JJy1vX7lSba9cmTQYyFKl1Osvv3RoNYWwSgKgEMLdSADMnSgAP2RT5hyArRbWDwaQCuAxC9s8OgBu3KgC3QMPWN7+zjtqu3Gu+ebN1etp0xxXRyGyIgFQCOFuJADmXH+oW7sDsykXC2CZhfXPQwXAdha2eXQAPHBAu62bmJh5e7duaptxjNlXX1WvX3rJsfUUwhoJgEIIdyMBMGdqArgN4BeoTh5ZSYHqQZxRK6gA2dXCNo8OgOmnx7IwDBNr1lTbjON0Ll6sXtesabs6nD2rOpikdUQUIlckAAoh3I0EwOyVBXABQCSAcjkon+cWwPDwcEZERJgt0dHRDrwcnCM5mdTrVaj75ZfM23x81La0SQa4d6967eVlucUwL9q0Ucf86CPbHE94FgmAQgh3k/FzKzo6OlMGCQ8P99gAWAzAHwCuA6iRw33y/AygpSX9XIMFWfnyKoB98YX5+nPntNZB41zX169r6/78M//nNhjIEiXU8UaOzP/xhOeRACiEcDcZP7eCg4Mt5hB4YAAsBGAfVItew1zs9yUs9wIORTa9gD21BZAkGzRQAezDD83Xb9mi1vv7q6BmVLasWr9uXf7P/e+/WqDs0CH/xxOeRwKgEMLdSAugZXoA3wK4D6B9FuXKQbUMeqVb1wuqpa97unXGcQDDrBzHo58BJLWOHm++ab5+7ly1vn598/WtW6v1kybl/9w//qgFQFs+Vyg8hwRAIYS7kWcALVsI1WFjM4B+Fhaj1WnlKqVbpwfwG9TMH1OhzQRyG9ankvP4ADh6tApgvXqZrx86VK3v29d8/Zgxav0LL+T/3PPnawGwcGHzlkYhckICoBDC3UgAtGwPVCuetcVoFVSv30oZ9k8/F3AsgF2QuYCzFBKiAljTpubrn31WrZ8xw3z9p5+q9bVq5f/cQ4ZoARAgr17N/zGFZ5EAKIRwNxIAXYPHB8A1a1T4qlLFfH2ZMmr9hg3m67dtU+uLFs1/i12jRuYB8MCB/B1PeB4JgEIIdyMB0DV4fADctUuFL19fMjVVrcuqt+/Jk9q269fzfl6DgQwIMA+A69fn/XjCM0kAFEK4GwmArsHjA+CZM1oAM3Z83rNHvfb2Ju/fNy8fF6eVP3TI8jGTktSt4tatM48vaHT5snYcY8/i99+32dsSHkICoHWDBw9m27ZtuXz58nyVEULYlgRA1+DxATA2VgtiR4+qdR9/rF7Xrm15n9Kl1faNG83XGwzkd99pM4hk1Vnk++/V9iJFyJdfVl+PGGG79yU8Q0EOgFu3buXzzz9Pb29v+vn58ZVXXuGgQYM4YMAAdurUiaVLl6avry8NVp7FSExMZLNmzTgj44O82ZSZMGECa9SowfsZ//oTQtiEBEDX4PEBkCSLFVMBbMsW9Xr4cMs9g42MYwfOm2e+/u23zW/pAuSDD1o+xpw5avtTT6khZQCyfXvrdUxOJu/dy/17EwVbQQ6ARs2bN2erVq0yrU9ISGCTJk34j3GkdgsGDRqUZQC0VGbatGmsW7eu3QLg2LFj7XJcIdyFBEDXIAGQqqUPIJcsUa+bNFGvZ82yXP6ll9T2MWO0dQYD6eenDer81VdZ9+4dOFBtGzCADA1VX9eoYfl8BgP53HNqUOpTp/L1VkUB4wkBsGXLlhYDIElu2LCB+/fvt7pvXgKgvdXPOLioEB5GAqBrkABIsl07FcCmTFFhy9giuGmT5fL/+5/a3rWrti4qSgt858+rFrsiRdTr77/PfIz69dW22bPJHTuyHgvwyBHt2OlDpxCeGABTUlIYGhpKkrx8+TJ37txpdV9XCoBxcXEMCQmhXq+3+7mEcGUSAF2DBECSgwapcBUUZN4546+/LJdftEhtf/xxbZ0xxPn6kikpat0zz1geSzA1VQ0jA5Bbt5rPO/zff5nPZxx8GlDPHyYl2eZ9C/fniQHw119/tRjYUlNTOWvWLI4bN47vvfceZ8+ezV69epmVza7Mnj172LhxY1asWNG0T1hYGGvWrMnq1avzyJEjDAkJ4YQJE9i5c2fevXvXVO6///7jwIEDOWvWLI4aNYrvvfceZ86cyUaNGjEpKYmhoaHs0KED9Xo9g4KCGBQUxIMHD5JUoXbatGmcNGkSZ82axeHDh/PChQu5Or8Q7kICoGuQAEhy8mQVrp57TgUyY+cM47AwGX37rSpTvLi2zhgK69TR1r32WuaWQpK8cEELdJcukYmJ2uvffjMvm5hIlixp/lzhd9/Z5n0L9+cpAbB8+fIMCgpit27d6OfnZzEAvvLKK/zf//5neh0XF8fq1aublc1JmUOHDmVqpdu8eTNLlSrFBQsWmNa1bt2ac+bMMb1u1aoVp0+fTpKMj49n8eLFefLkSW7evNnUUWXv3r0WWwBHjhzJuXPnml5HRUWxatWqvHHjRo7PL4S7kADoGiQAkvy//1PB6rHHyA8+UF83aGC9/J9/amHs1i21btQo9bpnT63c6tVqXYUK5vsbA6S/v3bLt0IFtW7dOvOyGzeq9T4+2rOJPXrk/z2LgiE3AbBLly6sXbu2XZcuXbrY/D1mbAHcs2dPpgB45MgR6nQ6nj171mx9jx49TGVzUoYkL126lCmkGYNb+g4nAwYM4LBhw0yvS5QoYbo1TZLly5fn/PnzLR4nvRMnTtDLy4u3b982W//CCy/wrbfeyvH5hXAXEgBdgwRAqhY1gCxRguzXT7sdbM3t21oAPHZMrWvVSr2eOlUrd+KE5Vu7xunnGjbU1jVtqtaFhJifq3Nntb57dzUrCUAWKkTGxOT/fQv354kBMCkpySywLV++nAsWLKC3tzeTk5PN9k0f7ubPn59tGTLrAJjeoEGDGJTug2LMmDEcMmQISTIyMpL+/v48ceJEtsdZuHAh/fz8Mr3vUaNGmTqM5OT8QrgLCYCuQQIgzTtZVKum/v3ww6z3KVFCldu8Wb0uX169DgvTyiQna8/6GYeYIbWQOXhw5nXDh2vrrlwhvby027737mkdVJYuVWViY8kFC8jdu/P3PRDuyVNuAVvrBUySkydP5oIFC1ioUKFM29KHu5yUIfMeAENDQ7l48WKGhITw7bff5lHjwKJZHGffvn388MMP6e3tnWk8w0GDBvGJJ57I8fmFcBcSAF2DBECqYVoyjt+3Y0fW+zzxhCr30UfmLYIZP/ONt22DgzPvmz5kpn8O0WjePLWuTBmt48fQoWpds2ZqJpLq1bVz9+ypeiMLz+HpAfDy5cucOnWq6bm9K1eumG1PH+5yUobMewAcOnRotu/ll19+oV6vN4W9mTNn8vfff6der+e///5rVrZFixYcPXp0js8vhLuQAOgaJABSdfbw8TEPgJZ646b3wguq3JtvkuHh2n5xceblXn9dre/cWb2+e1fdwgXIH3/Uyi1bptZVr65eGwyqQwmghp0x2rdPO5exznq9ts7PTxvPUBR8nhAAW7RoYTEAJiYmsnv37lyzZg1JsmfPnnz77bdN26Ojo1mxYkW+/vrrpnU5KXPx4kXqdDqzc+3evTtTABs4cCAHDRpkeh0UFMSvv/6aV69e5S3jw8EZXLlyhT4+Pjx37hzj4uK4ePFikmTv3r35wQcfmMqdP3+e5cuXN4XCnJxfCHchAdA1SABMU7myFqJKlbI8Hl96xmDXvTu5apX6unLlzOXWrFHbypVTxzTOFuLvb/4c308/acPIpKaqW7rG+hw/rpVLTSWrVNG21a1LnjypBp6uWFGt0+nU0DKi4CvIAXDr1q3s1KkTfX19GRAQYJoKbuDAgezSpQvLlClDvV7PAwcOkCTv37/P8ePHc9y4cZwzZw6XLFnCl19+mQ899BAnTJiQozLbtm1jo0aNqNfr2a5dO168eJFhYWGsU6cO9Xo927Rpw4iICA4bNoyBgYEMDAw0Pfe3d+9e6nQ66vV66vV6+vr6skWLFjx9+rTZ+1q0aBG7du3KcePGMS7tL8aUlBQGBwdz7NixfPPNNzl8+HD+lTYOVU7PL4S7kADoGiQApjHeqgXIFi2yL//hh6ps/frkO+9Yn8rt5EntuHv2aK12GUdvOH9eKxcVpU0316ZN5mMuWaIGjR4zhkxI0NbfvauCJqBaFEXBV5ADoDvZv38/W7duzatp0/4YDAZGR0dz0aJFbNmypZNrJ4RrkQDoGiQApunZUwtgaY/dZOnrr7XWQuPtYEtTfKakaFPElS2r3ebNOM1oYqJquQPMB34+csTy+Y2DTVt7H3JnyDNIAHQNq1evZs/0Y0ClOXHiBNtnNcm3EB7IVQNgeQA9ANRNt64ygEYA/B1VCQeSAJjmzTe10JWTZ+gOH9bKG2+9WtuvWTPz5wstTQ1Hkg8+aF6uX7/cv4+FC82fJRQFmwRA1xEWFsbhw4fz3XffZUhICKdMmcKJEycyRsZsEsKMKwbA5gDiARgApACYnba+EIBuAFIdUQkHkwCYxtjjFiB//TW+/1/+AAAgAElEQVT78jduZO45vHev5bJjx2plOna0fsz0QdHXl4yMzP37OHRIO0Z0dO73F+5FAqAQwt24YgDcAdX6FwCgNoC1AOambSsHFQwLGgmAadav14JThgH5LTIYtFu72QWudeu0XrsZJiEw07+/dqz0PX9zIylJG3tw06a8HUO4DwmAQgh344oBcLqFdYMBBAEoC2kBLNAuXVLz/zZvnvN9HntMC2yBgdZ7Diclqd6/33yT9fGmTdNmJLl5M+f1yMg4K8n48Xk/hnAPEgCFEO7GFQPguLR/H86wvhNUEJQAWMDduWO9c4UlHTtqAbBJk/yfPypKdSix9oxgTk2ZourUuHH2ZQ0GNQh1jx5qVhHhXiQACiHcjSsGwIYAQqCCXuMM21oAuOuISjiYBMB8GDVKC4Dpp3Vztu3btVvO9+5lXdY4hA2gnoMU7kUCoBDC3bhiAASAIjDvAZxeVUdVwoEkAObD7NlaeJo719m10dy+rQ0ps2+f9XILFpg/w1ilSu5aQIXzSQAUQrgbVw2AnkYCYD588YUWnrZscXZtzD3+uKrX+++r1+fPq1bK//2PXLpUG8gaIDt00KaT+/Zb59Zb5I4EQCGEu5EA6BokAOZD+jmAz593dm3MGW9Pd+6s6lahQuZha4wzjSQmkt26WZ95RLguCYBCCHfjygGwAoBKNloqOLLieSABMB8SE8mnniKfe07N0etKPv9cBbrixbUBpgMDVSCsXp308iKfeUZ1fCHJXbu0UHjypHPrLnLO+CEZFRXFO3fuyCKLLLK4/BIVFeWyAfA0gJUAVtlgOevIiueBBMB8sjb0i7NFRpq39JUoYT6tXMZn/QwGbVibkSMdWlWRDwkJCSxXrpzxg1IWWWSRxS2WcuXKMSH9ZPYZOCsAHrDhsQ7Z8Fj2IAGwgDIYtCnqihdXM4RkZ+lSVb5oUVJmr3IfCQkJTv+LXhZZPHkxtmhJS3zOl6zCH+m8APiGDY/1pg2PZQ8SAAuwZcvIpk3J33/PWfm4ONVSCJAjRrjebW0hhHBFsbGxrF27NmNlMFWbcVYAzA0fAA84uxL5IAFQmJk1y3xsQxkWRgghhKO5WgD8GOrZQOP8wL0B3AYQAyAcQEUn1Ss/JAAKMwaDGirGGAJ79VLzF+/eTa5dm/PWRCGEECKvXDEAvgygKIDSABKgOnroAVQGsMh5VcszCYAiE4OBnD7d8rAx3t7k8ePOrqEQQoiCzNUCYHC6r1+DmjIufavfLMdWxybcOgCmpKQwJiaGFy5c4JEjR7hz505u3LiRK1as4IoVK7h69Wp+9tlnXLduHTds2MCNGzdy06ZN3LZtGw8ePMhLly4xPj7e2W/DZc2bp4aLMQa/IkXU161auW7vZyGEEO7P1QLgO+m+XgvgcobtEgBtLDExkadPn+aWLVu4cOFCvvbaa+zQoQOrV6/O4sWL26w7up+fH6tUqcKGDRuyU6dOHDlyJOfPn8+tW7fy/PnzTE5Odva3wmlu3iSvXFEdQnbv1loCN250ds2EEEIUVK4WAGen/esP9ezf/6XbVgras4H54QdgBoAfANwEYAAwIIf7Dkwrn3FJBVDGyj4uEwBjYmK4fft2zpw5k507d2alSpWo0+kyhbXChQuzdu3abNu2LXv06MFhw4bxrbfeYkhICD/99FOuW7eO33//Pb///nt+99133LRpEzdu3MgNGzZw3bp1/Oyzz7hs2TK+//77fPPNN9m/f38+99xzrFevHitWrEhfX99M5/Tx8WHNmjXZtWtXjh8/np9//jnPnj3LVA/sJtujhwqAlSuT9+5lXdZgINu2VWWjox1ROyGEEAWBqwXAbgB2ATgOIBrqub/yUEO9/ANgog3OURkqtEWmnSsVuQuAqQAmAeibYfG1so9TAmBycjJ///13Llq0iP3792f16tXNApe3tzefeOIJ9ujRgxMmTODy5cu5Z88eRkVF2T10GQwGXrlyhXv37mVoaCjHjx/PLl26sEaNGvT29jarZ4kSJdi2bVtOnDiRmzZt4j///GPXurmCS5fIwoVVCJwxI+uyJ05oLYbz5jmmfkII4WiJiYkMDg5mYmKis6tSYLhaAASAmgB6QQU/AKgLFbwGAuhng+P7QGutq4/ctwCmAngqF+dzWAD8+++/uWzZMr700kuZbt9Wq1aNffv25UcffcQDBw5kO0CksyQlJfHMmTNct24dx44dy6ZNm7JIkSJm76VChQrs27cvly9fzosXLzq7ynYRHKxCXZEi5I4d1st9+KEWAJ96ymHVE0IIhzKGFVe4m1ZQuGIAdKT8BEB/qN7J2bFbAExISOCOHTs4btw4PvbYY6aApNPp2LBhQ06ZMoU//PADb9y4YfNzO1JycjL//PNPLl++nMOHD2fdunXNAmHlypUZFBTEzz77rMC0EMbHk5UqaeGufXvy2LHM5dq3N+9BfOaM4+sqhBD2JgHQ9pwRAF8E8A2AngAKOeqkVuQlABoA3E37NxHAtwCqZbGPTQNgYmIiN2/ezD59+tDPz89szr9BgwZx/fr1bh/4cuLatWv88ssvOXLkSD766KNmgbBWrVocP348f/75Z7fuXHL2rHnA0+nIlSu17QkJ2q1iY0/i4GCnVVcIIexGAqDtOasFsAZUR4wjANYAaI+ctabZWm4DYE8AKwD0B9AV6j3EQT2vaG2Q6nwHwKSkJG7bto0DBgxgsWLFTEHnmWee4ezZs3ns2DEaPHzMkKioKK5du5aDBg1i+fLlzZ4h7NOnD9etW8cYN518d8cO8oknVMCrUIFMSlLrf/pJC39jx6qvq1eX4WOEEAWPBEDbc4VbwE8DWAjgGNRA0M848Ny5DYCWNIW6Lfyple15CoAGg4F79uzh0KFDWbJkSVOgadCgAefOnctLly7Z6ZJwf6mpqTx8+DCnT5/O+vXrm753Xl5ebN68OefPn8+///7b2dXMlX//1Vr5jMPDvPWWet20KXn6tNZSeOiQc+sqhBC2JgHQ9lwhABrpAbSFmgruKID3ANS28zltEQAB4DcA56xsKwaA4eHhjIiIMFuiLYzbceXKFX7wwQesVq2aKbg8/vjjDAkJ4V9//eWES8T9/fvvv1y2bBlfeOEFFi1a1PR9bdy4MT/88ENevnzZ2VXMEePwMK1aqdfGVkFjT+F69dTrceOcV0chhLAHCYD5Ex0dnSmDhIeHu0wATK8QgO4AvoKaA/htAA/Z4Ty2CoAbANywsq0YrAyOHJz2wFZKSgq3bdvGF1980TQMygMPPMC33nqLp06dcu5VU8Dcu3eP33zzDfv06UN/f3/T/0WjRo04b948l25Z3bNHa+VLP2D0gQNq+9y52m3ilBSnVlUIIWwqJSWFERERTJEPtzwJDg7OarIGlwqA6RUDEATgRwB7AIwEUNJGx7ZVADwE4LSVbVZbAI8dO8bg4GA+9NBDpt677du358aNG3n//n1nXy8F3r1797hp06ZMYbBZs2ZcsmSJyz0zaDCQtWurkGfsIVyihBb2oqJURxFjQBRCCCFI92oBtKYsgDcA/ApgC9QAzEXzcbysAmA5qM4qXunWlbZQrmPaMeZbOUemZwAPHjzIvn37mlr7HnzwQU6bNo2RkZHOuzo8nDEM9u7d2zTuoK+vL1988UV+8803LjP46CefmA/70qOH+fbmzdX6YcOcUz8hhBDuwZWeAcytRwBMhRqGJbdGA5gM1XHDAGBj2uvJAALSyqxO21Yp3X7noG73vgVgOIClAJKgZhV5wMq5igHgzZs3+eWXX7JJkyamlqY2bdrw22+/lSZtF3Pnzh2uWrWKbdq0MU2VFxgYyBEjRnD//v1O7XF95w7p768FwNBQ8+1Llqj1gYFk+syanEyOHEm+8QYpjctCCCHcOQDmRyRUz11LizHwrQKQAvMAOBNq6JoYqDEAI6F6LlsLf0BaAKxYsSIBsFChQhwyZAiPHz/u7P97kQNRUVGcPXs269SpYwruNWvW5Lx583jt2jWn1GnUKC0AZmw0vnGD9PZW2779Vlu/bp22T8eO2c8xLIQQomBztwDYyNkVyINiAFimTBnOmjXLaaFB5I/BYOAff/zBN954wzQsj4+PD3v06MHt27c7tBX33DnVwvfcc5a3d+qkgt7LLxvrTj79tPmt49atydhYh1VZCCGEi3G3ABju7ArkQTEAvH79urP/r4WNJCQkcP369WzTpo2pVbBSpUqcPn26w8YXvH/f+oDPYWHaPMKxseSvv2rB7403tI4iTZqQcXEOqa4QQuSL9AK2PVcLgEUBzALwA4DdGZZfoG7Juhu7zQUsnO/ChQucPHkyK1SoQADU6/V88cUXuXPnTqc9KxgbSxYtqkLe55+TL72kDRhNkp99pg0qPW2aU6oohBC5IuMA2p6rBcA1AK4D2A815Ev65VdIABQuKjk5md999x2ff/55s2cFFy1a5JT/+969VcCrV4/U681nECHJmTPVOj8/0sJ45EII4VIkANqeqwXA72A+7EpG+x1VERuSAOhhzp8/z3HjxrFEiRIEQH9/f44aNYoREREOq8N335k/81elivng0LGxZNmyatvrrzusWkIIkScSAG3P1QLg7Gy2N3FILWxLAqCHio+P5/Lly/nkk0+aDf2zbds2u98evn9fdRQxBsD58zOXMY4p6OOTuTexEEK4EgmAtudqAXAyLA+2bDTTURWxIQmAHs5gMHD//v3s3bs3vby8CIC1a9fmsmXLmJCQYLfzDhumAl5AgBo/MKP798mHH1ZlXnnFbtUQQoh8kwBoe64WAAsD+ABAHwCPQo3BZ1weAXDReVXLMwmAwuTy5cscP348ixUrRqQNDzRjxgy7DA908aKaGWTVKutljD2GdTpShqYUQrgqCYC252oBsDGAS7A+SHOq02qWdxIARSZ37tzh/PnzWblyZQJg4cKFOWLECJ4/f96h9UhNJR9/XIXA556zPrSMEEI4U2JiIoODg11mWs6CwNUC4AEAHwEYBmBghmUYgBvOq1qeSQAUViUnJ3PDhg1s2LChaRiZPn36OHSmmB07tGcFN21y2GmFEEI4kasFwI+y2b7BIbWwLQmAIlsGg4F79+5l+/btTR1GunTpwgMHDjjk/C++qPUWlmnihBCi4HO1APheNtvLOqQWtiUBUOTKoUOH2L17d1MQbNWqFXfs2GHXnsORkWThwioETp9ut9MIIYRwEa4WANsCCMpi+z5HVcSGJACKPDl58iQHDBhg6jn89NNP8/vvv7dbEJw+XQXAwoVVBxIhhBAFl6sFwMkAtgA4CSAMwMp0y1oAic6rWp5JABT5EhkZyVGjRtHX15cA2KhRI27fvt3mQfDePXULGCBr1CBnzCAPHSJv3SKPHSM3byY3bCCTkmx6WiGEEE7gagHwOoC7ACItLP9AegELD/b3339z1KhR9PHxIQA+88wzNr81vGWLGhIm/SwiGZdBg6S3sBBCuDtXC4DHAZTMYvthR1XEhiQACpu6fPkyR4wYYQqCzZo1465du2wWBA8dIt9+m6xTxzz4BQRoX8+bZ5NTCSFEjsTGxrJ27dqMjY11dlUKDFcLgN2y2T7GIbWwLQmAwi4uXbrEYcOG0dvbmwDYsmVLm/cajopSt39v3VKtfkOHagNHb91q01MJIYRVMhC07blaAPw4m+0HHVIL25IAKOzq4sWLHDx4MPV6PQHwhRdeYEREhF3Odf++ml3E2CK4bBm5cyd5+jSZnGyXUwohhARAO3C1AHgHgJ+F9XqoKeLkGUAhrDh9+jR79OhBANTpdBwwYAAjIyNtfp7r17XOIumXmjXVcDJCCGFrEgBtz9UCoAHApxnW1YZq+TNAAqAQ2Tp06BDbtWtHAPTx8eGYMWN49epVm57jzBmyY0eyalXS11cLgRUrqm1CCGFLEgBtz9UC4N8A5gEYC0AHYCLU0C/7ADwOYInzqpZnEgCFU+zatcs0xZyfnx+Dg4Pt8gC1wUD+9htZsqQKgWXKkEePkjdvqvEEz5+XXsNCiPyRAGh7rhYAjUYCOA0gHsA4qDDoriQACqcxGAzctGkTa9asSQAsV64cly5dymQ7PLB3/DhZtqzloWPmzLH56YQQHkR6AdueqwZAAJgGFf7S2+2MiuSTBEDhdMnJyVyyZAnLli1LAKxVqxa/++47mw8mffYsWalS5gAYGEjevWvTUwkhhMgHZwbAN6FCXlbLBQATALwO4H8Abju6kjYgAVC4jLt37zI4OJhFixYlALZo0YIHDx606TkSE8mDB1XP4HPnSH9/GTtQCCFcjTMD4GkAcbA864elJQrSCUQIm/jvv/84bNgw09AxvXv35qVLl+xyrrffVgGwfHkyIcEupxD/3959h0dV5W8Af1NIgBCadBQMiKAUpQgIsiKCdBRwwVWpoihdUKRp2BVcioIgoBSNYKEI4i64KlWUEkGF/SUKUjbSiSAQQkghmff3x0kyk5CETHInM5m8n+e5j+Zm5t4z4WbyzrnnfI+IiJPcGQB3Aqjp5HO0EoiIhSIjI9m1a1cCYGBgICdOnMgrFt+rPXuWDAw0IfC99yw9tIiI5JE7A+CjeXhOD8tb4XoKgOLxNm/ezEaNGhEAK1euzKVLlzI5Odmy4w8bZgJgSIgKRouIeAJ3BcCSHnosV1AAlEIhOTmZS5YsYaVKlQiA99xzD7du3WrJsaOiSD8/EwI//tiSQ4qISD64KwDutvBYnr48nAKgFCoxMTGcMGECAwMDCYA9evTgb7/9lu/j9utnLxZ99KgFDRWRIiMhIYGhoaFMSEhwd1O8hrsC4F4ANSzYagL4uSAbngcKgFIoRUVFsW/fvukriowbN46XL1/O8/GOHCHLljUh8NZbzddp4uPJU6csaLSIeCUVgraeuwLgWwDCLNreKsiG54ECoBRqO3fuZLNmzQiAFStW5OLFi/M8PvCnn0xNwLSewE8/Jfv3J4ODSR8fcskSixsvIl5BAdB6nlwI2lsoAEqhl5KSwrCwMFapUiV9fOC3336bp2P9/LN92bjMm78/+f33FjdeRAo9BUDrKQC6ngKgeI0rV65wwoQJDAgIIAA+/vjjjIqKcvo4+/eTFSuSvr5khw7k+++TjRvb1xI+ccL6totI4aUAaD0FQNdTABSvc/ToUfbs2TO9fuDkyZN59epVp45x5Qr555/2r3//naxQwYTApk3Ja9csbrSIFFoKgNZTAHQ9BUDxWlu2bGGDBg0IgNWrV+fHH3+cr/WFv/3W3AYGyLvuMj2DmvQnIgqA1iuKATAIwN8BfAXgTwA2AP2deH4ZAEsA/AGzlN02AI1zeLwCoHi169evc8GCBSxXrhwBsFWrVty3b1+ej7d4sZkQkjYusEoV8pFHyIYNTQ/hnXeSx45Z+AJExOMlJyczMjLS0gL1RV1RDIA1YUJfFICtMOsL5zYA+gDYBeAKgCkAXgAQASAGQO1snqMAKEXChQsXOGLECPr5+dHHx4eDBw/muXPn8nSsX38lhwwhAwKynixyzz1kXJzFL0BEpAjxxAD4MIBHXHj8YgAqpf5/UzjXA9gn9fE9HfZVAHARwMfZPEcBUIqUiIgItmvXjgAYHBzM2bNnMzExMU/HOnuWnDGDnDyZXLDArCVcrJgJgf36kfm42ywiUqR5SgAMADAEQDiARQDeBbAPwHMAirvwvM4GwNUAzmSx/z0AsTDhMjMFQClybDYbP//8c4aEhBAA69Spw40bN+ZrfGCahQvtPYELFljQWBGRIsjdAbAKgGkAfgIwHkA5h++VAzABwAEA0wFUdcH5nQ2AhwFszGL/YJhbyfWz+J4CoBRZ8fHxnD59OoOCggiAnTp14sGDB/N1TJvNFI9Oqxv4xhvkmTMWNVhEpIhwVwBsDOAjAN/C3Fb1y+GxfgCeAPA9gE8ANLOwHc4GwFgAS7PY3xkmAHbI4nsKgFLknTp1iv369SMA+vv7c8yYMbx06VKej3ftGnnvvfaeQD8/snt3cvVqU15GRERyVpAB0AdAb5hZs58AaJGHY7QEsBLAdgCPpx4zP5wNgMkAFmSx/6HU4/TI4nsKgCKp9uzZw+bNmxMAK1SokK9l5S5cIF95xcwSdpwgEhhIdutG/uc/FjdeRNxGs4CtV1ABcBTMbd43AFS34Hi3ApgB4GcAw/NxnALrAQwPD2dkZGSGLTo62t3//iIFLiUlhR9++GGGZeW2b9+e5+Ndv07++99kr15kiRIZw+C2bda1W0TcR3UA8yc6OvqGDBIeHl4gAfAxACVccNySyDgj11kFNgYwqy00NNTd14SI21y5coWvvPJK+rJyvXr14rF8FviLiyPXryebNDEBsGZNUn8vRAo/BcD8CQ0NzTKHwANmAbuLswFwDbKeBbwEN5kFrB5AkawdO3aMvXv3JgAGBARw/Pjx+X6TP3aMDAoyIfCZZyxqqIi4jQJg/rizB9BT5RQAqwCoi4wTVPrA9PT1ctiXVgfwk2zOoTGAIrmwfft23nvvvQTASpUqcenSpfka77N4sf1W8MaNN37fZjPrD6ugtIjnUwC0nrtmAVeFmcTR0GFfTZiJIaUK4PzDAUyGqTloA7A29evJAIJTH/Nh6vdqODzPF8BumJU/XoV9JZDLAOpkcy4FQJFcSk5O5rJly1ipUqX08YHb8jiQz2YjO3UyAbBiRdMTOHYsOX482bEjWa6c+V7duuT58xa/EBGxlAKg9dwRAP8CIA4mXCUDmJm6PxBmrGBKAbQhKvU8WW1pgS8stX01Mj3XcS3gWJjl5LQWsIiFYmJiMowP7NGjBw8dOuT0cU6dIsuWzXo5OcftgQfIhAQXvBARsYQCoPXcEQA3wfT+BQO4G8AKALNTv1cFJhh6EwVAkTw6duwY+/Tpk14/cOTIkTzvZHddeDg5Zgw5aJCZKdy5s+kJXLWKXL6c9PU1IfCpp7S0nIinSkhIYGhoKBP0Sc0y7giAU7PYNxjAIACVUTA9gAVJAVAkn3bt2sWWLVsSAMuUKcPZs2db9odg3jx7T+DgwWRoKPnccyYwnjhhySlERDyOOwLg2NT/1sq0vyvs5VS8iQKgFE3JyeYe7L595I4d5Ndfmxotn35Kvv8++c475KxZ5MyZ5Pz55JIl5EcfkZ99ZmZtbN1K7t5NHj5MXr1Km83GVatW8fbbbycAhoSEcM2aNZasLzxiRNa3hlu1Mi9DRMTbuCMANocpCJ0Cs7KHowcBXCmohhQQBUDxTjYbefKkWXJj0SJy4kRzH7VNG1OAz9//5oPvnNlKlybr1WPyQw8xskkTzgkI4AiAI+vV4561a/N1//b6dfLZZ8n69cmHHyb79iV9fMxpZ8yw7kcmIuIp3DULuAQyzgB2FFKQDSkACoBS+CUmkgcOkB9+SL74ItmuHXnLLVkHtVtuIRs3Jnv0MF1rb7xh7rOm9fCtXWtC4/btZoDeDz/Yewi/+IJcuZL84AMTKt9806z31q+fSWZ33UWWKZPleWP9/Rl3zz1muu+cOeZ4p0/n+SWPG2cOXawY+d//WvejFBHxBO4KgEWJAqAUPpcvkxs2mBTUtKlJQY6BKyiIvP9+8vnnTVDbtIk8dIi8erVg2hcba24Nb9nCP0JD+U3t2twO8I+sAumtt5K9e5vbzTt25LqN8fHk3XebQzRqpFnCIuJdPC0ABsPcIs48PrAwUwAUz3fpUsbAlzY1FiArVCC7dSOnTDHj8w4fJlNS3N3iG+zdu5dt27ZlBYDtAwL4xSOPMKF/f7Jhw4yvx8+PvOceM9NjxYocewl/+sl+J7tyZbJWLfLOO8mnnybPnCnAFyciYjFPC4BnYcYG7gawAMDrMJNDfNzZqHxSABTPdOiQmYDRqtWNga93bzNJIyLCI8Nedmw2G7/88ks2aNCAAFi+fHnOmjWLcdHR5pbzjBlkz55ktWoZewnr1SOHDyc//5y8eDHDMadNy/pOd7ly5Mcfq3SMSEGIjY3l3XffzdjYWHc3xWt4WgAcCFMOxtHDAObATBApjBQAxTMkJ5M7d5Ivv2y6sdKSTKlSJhQVwsCXneTkZIaFhbFGjRoEwKpVq3LRokVMTEy0P+jECdMDOGCAuU2c9vPw9SWbNTNjD7dvpy0xiZs2maGJK1aQb79NVqpkf/ijj5Jnz7rtpYoUCSoEbT1PC4A5GQzgUXc3Ig8UAMV9rl8nv/nGTIxwTC1Vq5JDh5rJGPHx7m6lyyQkJHD+/PnpS8uFhIRwxYoVN64xbLORv/1mxjP27k2WL2//WZUpQ/bpY9JfahHq8+fJJ56wP6R8eVPdRr2BIq6hAGi9whQAAeAtdzcgDxQApWClpJievuHDM4a++vXJSZPMrFsv6OVzxtWrV/nGG2+wbNmyBMC7776bn3/+efY1BFNSyB9/JP/+d7J5c/vP0MfHTH6ZNo08cIDr1tpYsaL92z17kufOFexrEykKFACt52kBsC+AAwDWAOgCwDfT9xcWeIvyTwFQXM9mI/fvJ8ePJ2vUsCeSunXJqVPNeD/hxYsXOWnSJJYsWZIA2LRpU27YsOHmxaTPnSPDwkzvYHCw/ecbEsK4YeP46sO76IOU9Co4K1eqN1DESgqA1vO0ALgBwCgA/wGQDOBPAOsAzIBZM3id+5qWZwqA4jqnT5uJHGn1SgDyttvMOL+ff1YKyca5c+c4evRoBgYGEgCbNWvGjRs35m5VkcREcssWcuTIDGMHr5Wtwg+KP8/22ER/JLFXr3yVIRQRBwqA1vO0ALgA9l6/6gAmAtgM4FcAqwBUdVO78kMBUKwVH0+uWUN26WKfvXvLLeSwYeT33xe527v5cfr0aY4aNSpvQZA0AXvvXrMKisPEmosoyzAMYFefL9nhwUQuWkT+8YdrX4uIN9MsYOt5WgC8E8BiAN0B+Lm5LVZRAJT8Swsaw4aZ+iNp9ey6dyfXrTO9UpJnp06d4siRI9OD4H333ccvv/zSuXWGbTbyl1/I11/nxZDG6WHwT5TjUlIKmfUAACAASURBVDzDHiU2cfvm6657ESIiTvC0AAiYHsBOKJy9fVlRAJS8++MPs6xZ/fr2W7wNGpBvvaXZBi6QOQg2adKEa9euZUoeelWTfj3Cw4Om80T5Run/dtGoyN+7PE9u22bK8oiIuIknBkBvowAozklONuVZeve2L8FWrpyZ1fvjjxrXVwDSgmCJEiUIgPXq1ePy5cuZlJSUp+NF7zjIdyr+nZGwj9W8Xqkqo58cwwNLfmDcVf2bikjBKqgA+AWAkQCCLDxmMIBxqcf2ZAqAkjvHjpGTJ5PVq9t7+9q3N1NKvbhWnyeLjo7mxIkTWbp0aQJgzZo1uXDhQl67ds3pY124YFbZq48I/gNTeAS10/+d/+dXm//tMYUpEb+44FWIiNyooAJgEIARAPYBeBNAzXwcKwTAPJhyMWPg+V2XCoCSvbg4U2C4bVt76KtRgwwNJaOi3N06SXXp0iVOnz6dFSpUIABWrlyZM2bM4OXLl506zuXL5IMPpv1T29gMezkHY3gaVdP//WNrNzJL1h0/7poXIyJC99wC7gbgG5haf62deN5fAKwHsBXAY7ixRqCnUgCUjGw2cs8e8tln7TXlAgLMahPffKOxYR7s6tWrfPvtt1m9enUCYHBwMMeOHcvjToQ1m408epQ8dYq8ds2UihnYL5ltsY2L8Sz/RLn0MGhr04Z8913TfSgiYiF3jgFsAGAZgO8BPImsZ/36A+gHYA+ADwE0LqjGWUgBUIyzZ8lZs8h69ey9fU2akAsWkH/+6e7WiRMSEhIYFhbG+vXrEwD9/Pz4t7/9jT/++GOej7lvn+kdLIZEdse/uBJ9Ge9bwlwnxYqZGd8rV5peY5EiJiEhgaGhoUxISHB3U7yGJ0wCqQDgVZjbw5MAlE/dJgPYD2AqgMruapwFFACLsmvXzB/tzp1N2Za0mn2jR5MHDri7dZJPNpuNX3/9Ndu3b5/2Rsq2bdty48aNeZo5TJpSjp07m0ulFK5wWPAKXr6/o73mY6lSZL9+5Ndfm7WeRYoAFYK2nicEwDTFYHr7dgLYDWAggAB3NsgiCoBFTUoKuX07OXiw/Ravvz/ZrRu5di2pT7Beaf/+/ezXrx/9/f3TZw4vWLCAV65cydPxdu5k+jrDQUHk1k/PkfPmZVybuHJlctQos76zZoeLF1MAtJ4nBUBvpQBYVPz6KzlpUsa1eJs1M3+0o6Pd3TopICdPnuTLL7/MsmXLEgBLly7N0aNH88iRI04f6+hR8o477HW/W7UiBw0il7x8mOeGTSXr1LFfa3XqmHWf83AeEU+nAGg9BUDXUwD0ZlFR5D//Sd5zT8a1eCdONIFQiqyrV69y8eLFbNCgQfrt4S5duvCrr75y6vbwH39k7PRz3Lp3s/H/3t9rhhRUrmz/RvPm5oPH2bMufIUiBUcB0HoKgK6nAOhtzpwxf1xbtrT/wS1XjhwyhNy6VWvxSgY2m43btm1jz5496evrSwC88847OXfuXP6Zy8k/CQnk+vXk9Olm+F/duhmD4AMPkGFLrzNu/Tdk//5mnCBgxg0+8gj54Yek3oOkEFMAtJ4CoOspAHqD6GjyvffIdu3sg/GDgsinniI3bNBavJIrv//+O8ePH8/y5csTAIsXL85+/fpx586dTq07bLORGzeaW8KOQbBkSfLpp8kNq+OY+NFqskcP+2oyxYuTf/2rSZIahyqFjAKg9RQAXU8BsLA6c4ZcuNAUaU4LfYGBZM+e5Jo1KscheXbt2jWuWLGCrVu3Tr893KBBA86fP5+XLl3K9XFsNvK778gBA8znkcxhsGdP8tvP/yQXL3asQE2WLWsmKW3ZorqTUigkJyczMjKSybpeLaMA6HoKgIXJyZPm9m6bNqSPj73npGdP8pNPdBtNLBcREcGRI0eyTJkyBMASJUpw4MCB/O6775zqFYyNNXd6u3QxdcUdw+DDD5uJwjxxgpw5k7z3Xvs3q1QxYwjDwzWTWKQIUQB0PQVAT3fsGDl7dsYxfSVKkI8/Tq5aReaxjIeIM+Li4hgWFsaWLVum9wrWqVOH06dP58mTJ506VkwMuXq1WUraMQj27En+krbc8MGD5Guv2acZA2StWmYme0SE9S9QRDyKAqDrKQB6ol9/JV9/PWNPSKlSZN++5GefkVevuruFUoRFRERw7NixrFixIgHQ19eXHTt25KpVqxgfH+/UsbZtI1u0sF/mvr7mlnH6UtM2m1mGZOxYslo1+wPr1ze/I4cPW/3yRMQDKAC6ngKgJ7DZzMobU6ZkXIqtXDnz1/Df/yad/MMq4mpJSUlcv349e/ToQT8/PwJguXLl+MILL3DXrl25vkVss5FffGEyXdqlHxhIvvlmpiGAycmmiPnzz5sVa9Ie3LSp6SV3Ys1jEfFsCoCupwDoLjYb+fPPpiafY8HcSpXIoUPJTZvIpCR3t1IkV86dO8c333wzff1hAKxVqxanTJnCgwcP5uoYycnkihXk7bfbfx1at86mdnRSkllubuBAsnRp+xNatSLffps8dcraFygiBUoB0PUUAAtS2u2sV14ha9e2/9GqWpUcMYLcsUOzHqVQs9ls/Pnnnzlu3DhWrVo1PQw2a9aMc+fO5dlcFH+OiyPHjLH/ehQvTt5/vykh+PrrDuME08THmy7Evn3N9GLATJJq04Z85x0zY17EhTQL2HpFNQAGAJgJ4DSAawDCAbTPxfNCAdiy2K7l8BwFwIJw6BD56qsZQ1/16mZ24/ffqzizeKXk5GRu2bKFAwcOZHBwcPp4wfbt23PJkiW8cOFCjs/fvj1jb2Da5udnhgRm+bYVF2fGyf71r2ayVFoYfPBBUzZJq4+IC6gOoPWKagBcCSARwAwAQwDsBJAEoNVNnhcKIAXAswCedNj65vAcBUBXOXuWnDvXrLfr2NM3Zgy5e7dCnxQp165d45o1a9ijRw8GBAQQAP38/NixY0e+//772a46cvUquXYt+cYbZp3hO+/M+Ou0cmUO1WGuXjXTjXv3Nt2IaWHwL38h588nT5923QuWIkUB0HpFMQA2h+m1e9FhXyCAIzBBMCdpAbC8E+dTALRSbCy5fDnZoYO9OHNwsBmntHmzbu+KkLx06RKXL1/Orl27slixYgRAf39/du7cmWFhYTkuQZeURM6ZY19NDjAL4Nx0aevYWPLTT8levexhMG2Q4dy5pgahSB4pAFqvKAbAWTC9faUy7Z8AE+6q5/DctABYAUBwLs+nAJhfNpspUjtkiP2vUrFi5KOPmhU5rl1zdwtFPNbFixf5wQcfsFOnTvT390/vGWzfvj0XLlzI09n00p0+Tf7tb/Yc5+9PjhtnRlvcVGys+d3s08c+ZhAw9WhmzSKPHrX2RYrXUwC0XlEMgJsARGaxvx1MuOuaw3PTxgBeSf1vLICPAFTK4TkKgHl1/rzpOXCsXdG0KbloEZlDD4aIZO3ChQtctmwZu3btmn6bGABbtmzJmTNn8kgW04G3bs1YOQkwX0+YYFYXuelIi7g4ct06kyYduxUbNSKnTiX/7/+0AonclAKg9YpiAIwAsDmL/XfBhLpnc3juKADzADwBoCeAOTC9iYdwY49iGgVAZ6SkmPIsffrY17MqW9bM4N2/392tE/EaMTExXLVqFfv27ctSpUplWJN40qRJ3LNnD1NS011ioum4Cwm5ccJI9erksGG5rKoUH09u3GjWIXasM1inDjl+vOnp19hdyYICoPWKYgA8CmBjFvtDYALgKCeP97fU543P5vsKgLlx+bKpLeZYr++hh8z6u7rFK+JS8fHx3LhxIwcPHpy++ggAVqpUiYMHD+b69et59epV2mzkf/9L/v3vZOPGN4bBMmXIp54yddVv2ql3/brpXhw+POMKJFWrmkLUX39tkqcIyYSEBIaGhjIhIcHdTfEaRTEA5qcHMDtnYG4tZ6U0AIaHhzMyMjLDFh0d7e5/f/eLiDBv9kFB5s2/fHnTE5BlZVoRcbXk5GTu3r2bEyZMyFB0OjAwkJ07d+aiRYsYlbqOXFSU+dz24IP2OVlpW8uWZjJ+rqSkkHv2mPqdjtOQS5cmn3jCrMmtD9EieRYdHX1DBgkPDy9yATCnMYA25DwGMDs/APgxm++VRuobaOYtNDTU3deEeyQlmTpibdva3+ibNCE/+EC9fSIe5tixY5w3bx7bt2+fPokEAO+66y6OHTuWmzdvZkJCAs+fJ8PCyC5dMgbBPn3IXbucHOZ38CD5z39mXMS4WDGyY0dywQItSSfipNDQ0CxzCIpYAMxuFvAk3HwWcHaiAXyVzffUA5gmNtZM6rjtNvsb+lNPmU/+GgQu4vEuX77MtWvX8plnnsmwCklQUBB79OjBd999l1FRUdyzx6ws4hgEa9cmQ0PJyEgnf91Pnybfe8+Ev7RxwQB5772m+Pu+fRo3KHIT6gE00uoAjnXYFwDgMIBdDvtuA1A303MrZHG8Ych57KDGAEZHk1OmkOXK2dfi/cc/yHPn3N0yEckjm83GAwcO8I033mCbNm3o5+eXHgjr1KnDYcOGc/z4f/G++67cMFbw9tvNvK6vvyadGtJ15YqpWt2/f8ZJJNWqkc89ZwYfxsW57DWLeJOiOAYQAFbDrAQyE2bM367Ur1s7POZbmGDnKA7ABzBFpF8A8ClMr+GPAIpnc66iGwCPHiVfeMFeFPaOO8wn+fh4d7dMRCx26dIlrlmzhkOGDGGNGjXSw6C/vz+bNWvDtm1f5623/kAgOUMYDAoiH3vM3D52KrslJ5tlHl9+maxb137AwECyc2dzqzh1rKKI3KioBsDcrAW8HUBypn2LYSaRXAaQAOA3ANMBBOVwrqIXAH/6yawTmjYq/L77zKd2rdIhUiTYbDYeOnSI8+fPZ/fu3RkUFJQeCIODy7B+/Ud5xx3z6esbScCWnt1uucXc1c3TcsK//WaWMHn4YTO8JO2g9eubiWU7duSiTo1I0VFUA2BBKjoB8PvvyU6d7G+8nTub1eY1vk+kSEtMTOSOHTs4efJktmzZMsPt4rJlq/D2259ksWLLCEQRMEP9OncmFy4kf/89DyeMiTEfOgcNIitXzjiruHdvctky8tQpy1+nuE5sbCzvvvtuxsbGurspXkMB0PW8OwDabOQ335jF35G6EHzfvuSBA+5umYh4qJiYGG7YsIFjxoxhw4YNM8xI9PWtSWAAgbD0QNiggVl5ZOfOPNxISEkxE0WmTjWzin18Mq5G8sor5LffqnfQw6kQtPUUAF3POwNgSgq5fj3ZrJl9odBBg8xtGBERJ5w7d44rV67k0KFDeeeddTOVqHAMhP9jyZI2Nm9uFhOZP588c8bJk50/bwrMP/00WbGiPQwGB5v1xRcu1FrFHkgB0HoKgK7nXQEwOZlcudJ8JE8bcD18eB7v04iI3OjMmTNcuXIln3tuKGvWzBwIqxP4G4FFBCLp55fC3r3NUnROV4NJ6x38xz/I1q1JP7+MdWteeIH84gsVofYACoDWUwB0Pe8IgNevkytW2GfbBQWZ2Xd5Gq0tIpJ7aYFwwIAXWLNmg0yBsDyBHgRms3r1PZw2LZF5LrF66RK5bh05dKipVZMWBv39yQceMLeRd+7U7WI3UAC0ngKg6xXuAJiURL7/vvk0nDaIesoU8sIFd7dMRIqoCxcu8F//+hfHjn2Jd9zRnD4+fg6BsDh9fNqwdu0JHDx4A7du/ZPXr5vPsAkJTiwvbLOZIS3vvEN260aWKmUPhKVKmX3z5pG//KKJbgVAAdB6CoCuVzgDYEKCqdlXs6Z5wytb1qwAf+mSu1smIpJBbGwsly/fzNatp7JYsUcIBGfqJbyLwDMElhH4hXXrpnDAAPLdd51YmSQpyfT+TZ1qegP9/e2BsGpVs6rR+++T//ufq19ukaRZwNZTAHS9whUA4+PNJ95bbzVvbOXLk9OnawyMiBQKiYnkmjXJfPzxA6xceSGBJ1MnkjgGwjIEHiEQSuArVqhwkU88QX78sRM9hFeukBs3kqNHm1qDmZc6GTyY/OgjlZsRj6UA6HqFIwDGxZkiqlWqmDewihXJmTPNm5yISCF19iy5eze5ceNpzpy5lk888RJDQlrT1zcwUyisR6A/y5RZyNGj9/H8+dwmwVTR0eTq1Wb8YJ06GQPhnXeapeo++USBUDyGAqDreXYAjI01Qa9SJfNGVaWKCYJaT1NEvFhiYiL37t3L116bx+bNn2BQUEimQBjIkiVbsnbt0eza9RO++eYRHjxoy/1M45MnzcS5AQMyTihJWxZzyBDTQ3jihCtfpki2FABdzzMD4OXL5LRp9gXVb73V3Pq9ds3dLRMRcYv//vcP9uq1kQEBrxHoSKBcplBYln5+7VmjxkQ+9tg6Llp0gkeO2HJXnPr338nly0291Fq1MgbCkBCyXz9yyRLy4EFNKpECoQDoep4VAM+dIydONLN5ATPJ4733zKQPERHh5ctmeN/bb9vYv/9hNmr0EUuUGEWgFYESmUJhZfr4dGWFCq/xvvv+xV69TvG552wcN45cupSMiMimPuGJE6YHcMgQe3mttK1iRbJnT3M3Zt8+lZ0Rl1AAdD3PCIBRUeSwYWTx4vYxKR98oDcWEZFcsNnI48fJ1auvc9CgA6xXbykDAoYSaELAP1MorESgM4HJBD5nqVK/s317G197jfzqK3N3+Phx8sgRU2kmKYnmw/natWZSSZMmpK+vPRCWLEk+9BA5eTL5n/+oGoNYQgHQ9dwbACMizJJHaRXumzY1bzJOL6gpIiKOUlJMR96XXybw5Zf3sUOHxbzrrud4yy3N6OsbkCkUliPwEIGxBFYQ+D8CSQTM5/JWrcgxY8xd4K++In8Nj+HVdV+buqsPPWRCYFog9PExM4+fe4788EOTIr38tnFCQgJDQ0OZoLtVllEAdL2CD4A2G/ndd2T37vY3jHbtyM2bvf5NQkTEEyQmJnL//v2cPXsZO3YczqpVW9HXN+iGiSZA09QahfMIfEvgUoa7waVLm6z3aNfr/HzKj4z75zyyb197qa60rXx5sksXs6zdpk3mPrYXUSFo6ykAul7BBcDr18lVq8j77rO/KfTsSf7wg+vPLSIiOUpJSWFExG+cP381hw+fyHbtOrFixcqZQiHo41ODQHcCUwh8RuAQgWQCZLFi5rP966+Ta946wYgpqxg3dAzZooX5ZuZewsGDycWLyf37C/WQHwVA6ykAup7rA2BMDPnWW2SNGky/nzB0KHnokOvOKSIiljh37hw3bdrE2bNn8+mnn2bDhg3p759xXKGfX3H6+TUlMJDAWwQ2EzhHwAwXbNOGfHtGPE+s2UPbW3PIPn3I227L2EtYogTZujX54ovkypXk0aOF5q6QAqD1FABdz3UB8Phxctw4+4zeSpVM9//589afS0RECkxCQgIPHDjA5cuX86WXXmLHjh1ZtWrVG3oLgYqpYwtHEHiPwPesWPEie/Y0JV6/XHaGR+f8i3FjJ9PWoQNZpkzGUFiuHNmhg6kOsW6dKVfjgaFQAdB6CoCuZ20ATEkxY/l69rTPEqtf36xBGR9vzTlERMQjXbhwgdu3b+f8+fM5ZMgQNm/egiVLZl77GASqEehAYAyBxQS+Y8mS51n/rhQ+0+Y3Ln3wI+5qOpKna97P68WKZwyFFSqQnTqZWcfr1pkqEm4OhQqA1lMAdD1rAuDFi+TcuaZ8S9r4ji5dzHQxD/y0JiIiBcNms/H48ePcuPFLjh8/i61b92eFCk3p45O5ZiEIVCDQhsBzBOYS+Ip+OMx7/fZzbqMPePDhYYxt0IIpAYE39hS2a0e+9JJZ0u7gwQKtJqEAaD0FQNfLXwD8+WdTKLRECftMr5dfJo8ds/ZKEBERr5KcnMxjx47xs8828qWXZvORRwazVq37GRhYNotgGEigAYHeBCbRH+/zHqzg2HLzufu+kbzWpDUZFJQxFJYsaSafDB1KLlpkFl2OjXXZa4mMjGSySphZRgHQ9ZwPgBcvml8mx9m8LVqYZYS0VJuIiOSDzWbjmTNnuHXrVi5atIgjRoxmkyadUtdD9skiHJYn0IIVyz/F/i1G8fO/juCZp/rxetu25naxYyj08SHr1CEff9xMVf7iC/J//8tmORRxJwVA18tdAExOJr/+2tR3Ckzteg8KMlP4f/yxYK4GEREp0uLj47lvXwSXLFnLESPeYOPGg1i8+AMEbixXA4DFAyuwWbWmHF3nIX5Y72HuDWnBi5Vq0ubjkzEYlipFtmxpile/8w65Ywd54YK7X67LXbpk/qyPGEHGxbm7NRkpALpezgHw0CFywgSyWjX7L8qDD5JhYS7rShcREcktm83c3R0zJoZ33PETgVUE/kFgAIHWWYbDkgBbFwvipMo1+O+QO3ikRg3GZ76FDJBVqpDt25sl8JYuNScqgHF+339PNmhg5rrMmUNGRlo/nD4piXz4YftLbdqUPHXK2nPkhwKg690YAI8fJ2fPJps1s18ZNWuSr71m6jKJiIh4qNOnzZoDr79O9utnlrFr2PAKa9fez2rV1tLHZwbN6iYPEaiR4bZyFYCPAHzZ15erSwYzskRpXvP1vyEYXil3G8f0/5P332+CWt26ZK1aJiuuXEnmZ0W4/fvt1dMctyZNTBUcK9hsZvh+2rH9U19itWrkvn3WnCO/FABdzwTAQ4fIt98m77/ffkUEB5P9+5Nbt2p8hIiIeIVTp8hZs0yFMvPnLoFmNZMvCcwnMJpANwL1CZSkD8AQgN0ATgD4EcDv4Efg4g0hzbFSzahRptNw2zazJnNuevAOHzYlc9P6XZ5/nqxd237cypXJvXvz/zOYPdt+zBkzyO3bzRxOpK7VMG1a/kKsFRQAXc8EwLQrISiIfOIJcv161e0TERGv9uef5C+/mH6OsDAzFq5FCzIgwMwXKVfOxpCQc6xZczdLl/6Yvr6vExjEEiU6sndvG6dNI997j1y6NIXTpp1i374pGVa8yxwKu3Qhp04lP/vM9LT98Qd55Qr566+malrNmvZ1Ew4ftrfzu+/s81lKlDCVbk6cMHejk5JMz+COHeTHH5MffUR+/rlZcnn7dnLLFjOE/9NPyTFjTI9o2hDIZ56xB9MjR8h69eztrVvXPNddFABdzwTARx8l16zxvFGgeRQdHc3Q0FBGR0e7uykieaJrWLxBYb2Or1/P+saXzZZ1z5hjHcDoaLPKSceO5B132G+v5nYrXdpUWMvs6FETypw5Vk5b+/ZkYmLGc8TFmfrajiG2QQNyyhQTWAuyrK8CoOu5fi1gN4iMjCQARkZGurspInmia1i8QVG5jnMqBH39uunN+/RTM5ekVSv7bV7HrXhx8t57yZ07sz/PxYtk585ZBzo/P7O88u23kxUrmjKIxYqZ4wYFmXN27GiG8//nP6Zd2Tl40NTVznyOSpXMTcIlS6wbj5gdBUDXUwAU8UC6hsUbFJXrOC8rgcTFmdvP+/ebijPO9K7FxpInT5IREWR4uAljOQW6vLDZTJW3V18lGzbMOnQ2amR6B3/4wfrzKwC6Xi0APOrk7F5nu/WdeXxuHnuzx3jjm467b6W46vxWHDevx3DVdaxrOHvuvI51Deu92ApZveaCWgrOlb8/Nzt2VBS5bBn55JNmMkrmMFiyJHn//dFs1SqUY8ZE88UXzSSWESPISZPIf/6TDA01PYiNG5veyn79yH//mzx+PPufKRQAXaY5AIaHhzt1oTj7S+3M43Pz2Js9xhvfdNz9mlx1fiuOm9djuOo61jWcPXe+Ll3Dei+2QlavqaACoCt/ns4c22YzYwJffdX0AtqDYGRqaIt0ajxiyZLmeU8/HcklS8hdu8joaAVAV2sOgFu2bGFMTEyut/DwcCI1OFr9+Nw89maPcbZ9hWFz92ty1fmtOG5ej+Gq61jXcMFfR+48tzdew7l9bFG8jrN6TSdPniQAnjx5ssDP7QnHPno0hitXxrBfP3OMli3D2aNHDPv0iWGvXjHs0CGGLVvG8IEHYjhwYAynT4/hnDkxbN8+hv7+MQTCU8NeOIEYAjHcvv2kAqCLNQJuXD5HmzZt2rRp06bNA7bqEJfwgfnhltamTZs2bdq0afOgrTpMThERERERERERERERcUIFABsBXAVwEEA79zZHxGnPA/gJQBKA19zcFpG8CADwPoDjAC4D2A2gpVtbJCJebw2ApQACAXQHcAFAWbe2SMQ5PQB0A/ApFAClcCoJYArsg/37Ajiful9ExHJBABIBVHXYtw3AAPc0RyRf3oUCoHiP0wAau7sRIuJ+QQD+DuArAH8CsAHon81jAwDMhHkDuQYgHED7LB53L0yPn6P5AGZZ0F6RzFxxDTtSAJSC4OrrGADqpD4+OL+NFZHCrybMG00UgK0AUpD9m85KmJ69GQCGANgJMz6qVabHPQDgf5n2TQOwyJomi2TgimvYkQKgFARXX8fFYYLiFIvaKyKFXDEAlVL/vymy/9TZPPV7LzrsCwRwBObNx5F6AKUgueIadqQAKAXBldexP8ykvBWWtFREvE5ObzqzYD5hlsq0fwLMJ1XHiuJBABKgMYBS8Ky6hh0pAEpBs/I69oHpMfwCKvwrItnI6U1nE4DILPa3g3nT6Zpp/2oAS2BuO3SDmXmmWcDialZew34w1+8SAK/D9LL4WtZSkexZeR0vBbAdZtygiEiWcnrTiQCwOYv9d6U+59lM+ysA+BJAHIBDAB6yrpki2bLyGg5N3Z/isGU3JkvESlZdxzVS98UBiE3drgBobWVjRaTwy+lN5yjMGJLMQlKfM8qF7RLJLV3D4g10HYtIgbKy90TEHXQNizfQdSwiBSqv405suHHciYg76BoWb6DrWEQKVF5mnk1CzjMoRQqSrmHxBrqORaRA5ab21FiHfQEADgPY5fqmieSKrmHxBrqORaRADAcwGWalDhuAtalfT0bGJYNWw1SfnwkzzmRX6teaUSbupmtYvIGuYxEpUFHIWOrCcavh8Li8rj8p4mq6hsUbiDzfXwAAAvBJREFU6DoWEREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREe/zFoC9AHYDKOnGdowGsAfAQQDV3NgOEREREa8XBuC21P9/FMBOmBD2opva8wGAGm46t4iIiEiREIaMgasmgKsAXnNPc25oj4iIiIhYLKvAFQUFQBERERGvpQAoIiIiUsQoAIqIiIgUMbkJgCcA2ADEAHgndd9jACIA/AFgLoBXAMwDsAzAdwC6ZXGuewGsS33MQgDvAmiai/aIiIiIiIVyEwDfBLAIQFCmx5UCcBHAGQCNHPb/BUASgIEO+1rBBMg2DvuWp57rZu0REREREQvdLAA+D2BMDs+PSj1GZmsAXAFQJvXrQwA2ZHrMHAArc9EeEREREbFQTgHwNZiagD45PD8KpnZfZgMApAB4EkALmFvIU/PYHhERERGxUHYB8BiAsQDiAEzM4fnZBcBHYELfywD6pv7/kDy2R0REREQslF0AnJD6/2MBJAC4O5vnZxcAB8GEvidgxv2lhcG8tEdERERELJRdAByV+v8+MLN69wLwzeL52Y0B3ADgEsxEET+YmcRfZfG4xwBUukl7RERERMRCWQWukwDGOXzdCKYHb0YWz48CEA3gDod9DwGIB9DLYV97ANcAdHfYVwHAgly0R0REREQs5Bi4egD4EWbyxmUA21L3v5e6LwWmJ7C+w/OjAKwAMBnAdJiagF/AlH3JrBmALwF8DGA2gGkAgnNoj4iIiIi4QH4DV3ZjAPNKAVBERETExRQARURERIqY/AauUzC3dK2iACgiIiLiYmEAaubheT0A/AQzLjAJwC4At1nUHgVAERERERd6C8DPMJM7SrqxHS8C2AfgNwDV3NgOERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGRwu//AUAbUIkCnm9V
AAAAAElFTkSuQmCC\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
...
...
@@ -2742,42 +2776,65 @@
],
"source": [
"\n",
"fig, ax = plt.subplots(
3,1
)\n",
"fig, ax = plt.subplots(
4,1,figsize=[8,12]
)\n",
"ax[0].yaxis.get_major_formatter().set_powerlimits((0, 2))\n",
"ax[1].yaxis.get_major_formatter().set_powerlimits((0, 2))\n",
"ax[2].yaxis.get_major_formatter().set_powerlimits((0, 2))\n",
"ax[3].yaxis.get_major_formatter().set_powerlimits((0, 2))\n",
"\n",
"\n",
"ax[3].set_xlabel(r'$\\rm [kpc]$',fontsize=18)\n",
"ax[0].set_ylabel(r'$\\langle v^{-2} \\rangle$$\\rm \\, [km/s]^{-2}$',fontsize=18)\n",
"ax[1].set_ylabel(r'$\\langle v^{-1} \\rangle$$\\rm \\,[km/s]^{-1}$',fontsize=18)\n",
"ax[2].set_ylabel(r'$\\langle v \\rangle$$\\rm \\,[km/s]$',fontsize=18)\n",
"ax[3].set_ylabel(r'$\\langle v^{2} \\rangle$$\\rm \\,[km/s]^2$',fontsize=18)\n",
"\n",
"ax[2].set_xlabel('r [kpc]',fontsize=18)\n",
"ax[0].set_ylabel('[km/s]',fontsize=18)\n",
"ax[1].set_ylabel(r'[km/s]$^2$',fontsize=18)\n",
"ax[2].set_ylabel(r'[km/s]$^3$',fontsize=18)\n",
"ax[0].set_xscale('log')\n",
"ax[1].set_xscale('log')\n",
"ax[2].set_xscale('log')\n",
"ax[0].set_ylim([52,1.1*m1.max()])\n",
"ax[1].set_ylim([1e4,1.1*m2.max()])\n",
"ax[2].set_ylim([1e4,1.1*m3.max()])\n",
"ax[3].set_xscale('log')\n",
"\n",
"ax[0].set_ylim([m_2.min(),1.1*m_2.max()])\n",
"ax[1].set_ylim([m_1.min(),1.1*m_1.max()])\n",
"ax[2].set_ylim([m1.min(),1.1*m1.max()])\n",
"ax[3].set_ylim([m2.min(),1.1*m2.max()])\n",
"\n",
"ax[0].set_xlim([0.5,3*myhydro.r200])\n",
"ax[1].set_xlim([0.5,3*myhydro.r200])\n",
"ax[2].set_xlim([0.5,3*myhydro.r200])\n",
"ax[3].set_xlim([0.5,3*myhydro.r200])\n",
"\n",
"ax[0].axvline(x=myhydro.r200,color='k',linestyle='--')\n",
"ax[1].axvline(x=myhydro.r200,color='k',linestyle='--')\n",
"ax[2].axvline(x=myhydro.r200,color='k',linestyle='--')\n",
"ax[3].axvline(x=myhydro.r200,color='k',linestyle='--')\n",
"\n",
"r_v_c = (r_v[:-1]+r_v[1:])/2.\n",
"ax[0].plot(r_v_c,m1)\n",
"ax[0].plot(r_v_c,mm1)\n",
"ax[0].plot(r_v_c,mmm1)\n",
"ax[1].plot(r_v_c,m2)\n",
"ax[1].plot(r_v_c,mm2)\n",
"ax[1].plot(r_v_c,mmm2)\n",
"ax[2].plot(r_v_c,m3)\n",
"ax[2].plot(r_v_c,mm3)\n",
"ax[2].plot(r_v_c,mmm3)\n",
"\n",
"ax[0].plot(r_v_c,m_2,lw=2)\n",
"ax[0].plot(v_2_av[:,0],v_2_av[:,1],\"k\",lw=1.5)\n",
"ax[0].plot(v_2_av_m[:,0],v_2_av_m[:,1],\"r\",lw=1.5)\n",
"fig.text(0.3,.9,r\"$\\rm\"+ hydro.name +\" $\",fontsize=30)\n",
"fig.text(0.35,.87,r\"$\\rm Hydro $\",fontsize=25)\n",
"\n",
"\n",
"\n",
"\n",
"ax[1].plot(r_v_c,m_1,lw=2)\n",
"ax[1].plot(v_1_av[:,0],v_1_av[:,1],\"k\",lw=1.5)\n",
"ax[1].plot(v_1_av_m[:,0],v_1_av_m[:,1],\"r\",lw=1.5)\n",
"\n",
"ax[2].plot(r_v_c,m1,lw=2)\n",
"ax[2].plot(v_av[:,0],v_av[:,1],\"k\",lw=1.5)\n",
"ax[2].plot(v_av_m[:,0],v_av_m[:,1],\"r\",lw=1.5)\n",
"\n",
"ax[3].plot(r_v_c,m2,lw=2,label=r\"$\\rm Data$\")\n",
"ax[3].plot(v2_av[:,0],v2_av[:,1],\"k\",lw=1.5,label=r\"$\\rm Eddington$\")\n",
"ax[3].plot(v2_av_m[:,0],v2_av_m[:,1],\"r\",lw=1.5,label=r\"$\\rm Maxwellian$\")\n",
"legend = ax[3].legend(loc='upper right', ncol=2, shadow=False, fontsize=font)\n",
"frame = legend.get_frame()\n",
"\n",
"fig.tight_layout(h_pad=-2.7)\n",
"ax[0].text(22,250,r'$\\int_0 ^{v_{max}} v f(v) dv$',fontsize=17)\n",
"ax[1].text(22,70000,r'$\\int_0 ^{v_{max}} v^2 f(v) dv$',fontsize=17)\n",
"ax[2].text(22,3e7,r'$\\int_0 ^{v_{max}} v^3 f(v) dv$',fontsize=17)\n",
"ax[2].text(170,1e7,r'R$_{200}$',fontsize=17)\n",
"\n",
"\n",
...
...
@@ -2787,8 +2844,11 @@
"ax[1].tick_params(axis='y', which='major', labelsize=15, size=5,width=1.2)\n",
"ax[1].tick_params(axis='x', which='major', labelsize=0, size=5,width=1.2)\n",
"ax[1].tick_params(axis='both', which='minor', labelsize=15, size=3,width=1.2)\n",
"ax[2].tick_params(axis='both', which='major', labelsize=15, size=5,width=1.2)\n",
"ax[2].tick_params(axis='y', which='major', labelsize=15, size=5,width=1.2)\n",
"ax[2].tick_params(axis='x', which='major', labelsize=0, size=5,width=1.2)\n",
"ax[2].tick_params(axis='both', which='minor', labelsize=15, size=3,width=1.2)\n",
"ax[3].tick_params(axis='both', which='major', labelsize=15, size=5,width=1.2)\n",
"ax[3].tick_params(axis='both', which='minor', labelsize=15, size=3,width=1.2)\n",
"plt.savefig(\"/home/arturo/Documents/git/LAMtoLUPM_latex/moments.png\",dpi=300)"
]
},
...
...
%% Cell type:code id: tags:
```
python
%
matplotlib
notebook
%
load_ext
autoreload
%
autoreload
2
```
%% Cell type:code id: tags:
```
python
from
scipy.stats
import
rv_continuous
from
scipy.interpolate
import
interp1d
from
matplotlib.patches
import
Circle
from
scipy.special
import
gamma
import
numpy
as
np
import
emcee
from
mpl_toolkits.axes_grid1
import
make_axes_locatable
from
numpy
import
exp
,
sqrt
from
scipy.integrate
import
quad
,
dblquad
,
nquad
import
matplotlib.patches
as
patches
from
itertools
import
product
from
scipy.integrate
import
quad
import
scipy.optimize
as
optimize
import
matplotlib.pyplot
as
plt
import
matplotlib
as
mpl
from
sklearn.neighbors
import
KDTree
import
sys
import
lmfit
from
py_unsio
import
*
import
pymc
import
os
from
scipy.integrate
import
simps
from
pymodelfit
import
FunctionModel1DAuto
import
wkbl
from
wkbl.astro.halo_info
import
*
from
mpl_toolkits.mplot3d
import
axes3d
from
matplotlib
import
cm
import
wkbl.astro.nbody_essentials
as
nbe
import
cfalcon
CF
=
cfalcon
.
CFalcon
()
import
iminuit
from
iminuit
import
Minuit
,
describe
,
Struct
import
probfit
from
matplotlib.colors
import
LogNorm
from
matplotlib.ticker
import
FormatStrFormatter
import
warnings
warnings
.
filterwarnings
(
'ignore'
)
```
%% Cell type:code id: tags:
```
python
hydro
=
wkbl
.
astro
.
halo_info
.
MochimaHydro
()
```
%% Cell type:code id: tags:
```
python
#halo = HALOBHydro(where="home")
simname
=
"Mochima"
pathsim
=
"/data/OWN/SF1test/SF0/mstar1_T3600/output_00041"
myhydro
=
wkbl
.
Galaxy_Hound
(
pathsim
)
print
myhydro
.
dm
.
pos3d
[:,
0
].
max
()
zoom_reg
=
np
.
where
(
myhydro
.
dm
.
mass
==
myhydro
.
dm
.
mass
.
min
())
nucenter
=
nbe
.
real_center
(
myhydro
.
dm
.
pos3d
[
zoom_reg
],
myhydro
.
dm
.
mass
[
zoom_reg
])
print
nucenter
myhydro
.
center_shift
(
nucenter
)
myhydro
.
r_virial
(
600
,
n
=
3
)
```
%% Output
loading Dark matter..
loading Stars..
loading Gas..
36844.594
[20418.88714131 17567.72033332 17124.40448217]
| r_200 = 212.70
| Diagonal matrix computed
| | 20, 0, 0|
| D =| 0, 14, 0|
| | 0, 0, 4|
%% Cell type:code id: tags:
```
python
simname_nospace
=
list
(
simname
)
for
i
in
range
(
len
(
simname
)):
if
simname
[
i
]
==
" "
:
simname_nospace
[
i
]
=
"_"
simname_nospace
=
""
.
join
(
simname_nospace
)
```
%% Cell type:code id: tags:
```
python
pos_dm
=
np
.
array
(
myhydro
.
dm
.
pos3d
.
reshape
(
len
(
myhydro
.
dm
.
pos3d
)
*
3
),
dtype
=
np
.
float32
)
pos_gs
=
np
.
array
(
myhydro
.
gs
.
pos3d
.
reshape
(
len
(
myhydro
.
gs
.
pos3d
)
*
3
),
dtype
=
np
.
float32
)
pos_st
=
np
.
array
(
myhydro
.
st
.
pos3d
.
reshape
(
len
(
myhydro
.
st
.
pos3d
)
*
3
),
dtype
=
np
.
float32
)
pos
=
np
.
concatenate
((
pos_dm
,
pos_st
,
pos_gs
))
phi_cord
=
np
.
concatenate
((
myhydro
.
dm
.
phi
,
myhydro
.
st
.
phi
,
myhydro
.
gs
.
phi
))
mass
=
np
.
concatenate
((
myhydro
.
dm
.
mass
,
myhydro
.
st
.
mass
,
myhydro
.
gs
.
mass
))
v
=
np
.
concatenate
((
myhydro
.
dm
.
v
,
myhydro
.
st
.
v
,
myhydro
.
gs
.
v
))
print
len
(
mass
)
*
3
,
len
(
pos
)
pos3d
=
pos
.
reshape
(
len
(
pos
)
/
3
,
3
)
r2
=
pos3d
[:,
0
]
**
2
+
pos3d
[:,
1
]
**
2
+
pos3d
[:,
2
]
**
2
```
%% Output
10194240 10194240
%% Cell type:markdown id: tags:
# Ellipticity T and S
%% Cell type:code id: tags:
```
python
get_mat
=
np
.
vectorize
(
nbe
.
m_matrix_for_r
)
```
%% Cell type:code id: tags:
```
python
r
=
np
.
linspace
(
myhydro
.
gs
.
hsml
.
min
(),
2
*
myhydro
.
r200
,
300
)
M_dm
=
np
.
array
([
nbe
.
m_matrix_for_r
(
myhydro
,
'halo'
,
i
)
for
i
in
r
])
M_st
=
np
.
array
([
nbe
.
m_matrix_for_r
(
myhydro
,
'stars'
,
i
)
for
i
in
r
])
a_dm
,
b_dm
,
c_dm
=
np
.
sqrt
(
M_dm
[:,
0
,
0
]),
np
.
sqrt
(
M_dm
[:,
1
,
1
]),
np
.
sqrt
(
M_dm
[:,
2
,
2
])
a_st
,
b_st
,
c_st
=
np
.
sqrt
(
M_st
[:,
0
,
0
]),
np
.
sqrt
(
M_st
[:,
1
,
1
]),
np
.
sqrt
(
M_st
[:,
2
,
2
])
S_dm
=
c_dm
/
a_dm
T_dm
=
((
a_dm
**
2
)
-
(
b_dm
**
2
))
/
((
a_dm
**
2
)
-
(
c_dm
**
2
))
S_st
=
c_st
/
a_st
T_st
=
((
a_st
**
2
)
-
(
b_st
**
2
))
/
((
a_st
**
2
)
-
(
c_st
**
2
))
```
%% Cell type:code id: tags:
```
python
outputing
=
open
(
"../../datafiles/"
+
simname_nospace
+
"_S_and_T.txt"
,
"w"
)
outputing
.
write
(
"# "
+
simname
+
" ellipticity parameters
\n
"
)
outputing
.
write
(
"# r200 = {0:.2f} kpc
\n
"
.
format
(
myhydro
.
r200
))
outputing
.
write
(
"# format:
\n
"
)
outputing
.
write
(
"# r (kpc), S , T
\n
"
)
for
i
in
range
(
len
(
T_dm
)):
outputing
.
write
(
"{0:.2f} {1:.6f} {2:.6f}
\n
"
.
format
(
r
[
i
],
S_dm
[
i
],
T_dm
[
i
]))
outputing
.
close
()
```
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
figsize
=
[
10
,
4
])
#ax.set_xlim(4,250)
font
=
15
ax
.
set_ylim
(
0
,
1.18
)
ax
.
set_xlim
(
0
,
410
)
ax
.
set_xlabel
(
'r [kpc]'
,
fontsize
=
font
)
ax
.
plot
([
4
,
5
],[
1e3
,
2e3
],
color
=
'gray'
,
linestyle
=
'--'
,
lw
=
2
,
label
=
"S"
)
ax
.
plot
([
4
,
5
],[
1e3
,
2e3
],
color
=
'gray'
,
linestyle
=
'-'
,
lw
=
2
,
label
=
"T"
)
ax
.
plot
(
r
,
T_dm
,
'-'
,
color
=
'#155c9e'
,
lw
=
2
,
label
=
"Dark matter"
)
ax
.
plot
(
r
,
S_dm
,
'--'
,
color
=
'#155c9e'
,
lw
=
2
)
#ax.plot(r,T_st,'-',color='#a91e4f',lw=2,label='stars')
#ax.plot(r,np.sqrt(S_st),'--',color='#a91e4f',lw=2)
ax
.
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
linestyle
=
'-.'
)
ax
.
text
(
myhydro
.
r200
+
2
,
0.2
,
r
"R$_{200}$"
,
fontsize
=
font
)
ax
.
axvline
(
x
=
myhydro
.
r97
,
color
=
'k'
,
linestyle
=
'-.'
)
ax
.
text
(
myhydro
.
r97
+
2
,
0.2
,
r
"R$_{97}$"
,
fontsize
=
font
)
ax
.
axvline
(
x
=
8
,
color
=
'k'
,
linestyle
=
'-.'
)
ax
.
text
(
10
,
0.2
,
r
"R$_{\odot}$"
,
fontsize
=
font
)
ax
.
text
(
50
,
0.9
,
r
"$\rm "
+
simname
+
"$"
,
fontsize
=
1.5
*
font
)
legend
=
ax
.
legend
(
loc
=
'upper right'
,
ncol
=
2
,
shadow
=
False
,
fontsize
=
font
)
frame
=
legend
.
get_frame
()
ax
.
tick_params
(
axis
=
'both'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
.
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
fig
.
tight_layout
()
```
%% Output
%% Cell type:markdown id: tags:
# Beta of r
%% Cell type:code id: tags:
```
python
point_num
=
150
r_beta
=
np
.
logspace
(
-
1
,
np
.
log10
(
4
*
myhydro
.
r200
),
point_num
)
vphi
=
np
.
concatenate
((
myhydro
.
dm
.
vphi
,
myhydro
.
st
.
vphi
,
myhydro
.
gs
.
vphi
))
vtheta
=
np
.
concatenate
((
myhydro
.
dm
.
vtheta
,
myhydro
.
st
.
vtheta
,
myhydro
.
gs
.
vtheta
))
vr
=
np
.
concatenate
((
myhydro
.
dm
.
vr
,
myhydro
.
st
.
vr
,
myhydro
.
gs
.
vr
))
```
%% Cell type:code id: tags:
```
python
def
beta_param
(
i
):
condition
=
np
.
where
((
r2
>
r_beta
[
i
]
**
2
)
&
(
r2
<=
r_beta
[
i
+
1
]
**
2
))
v_r
=
vr
[
condition
]
v_phi
=
vphi
[
condition
]
v_theta
=
vtheta
[
condition
]
#print (np.std(v_phi))**2 ,(np.std(v_theta))**2 , (np.std(v_r))**2
return
1
-
((
np
.
std
(
v_phi
))
**
2
+
(
np
.
std
(
v_theta
))
**
2
)
/
2.
/
(
np
.
std
(
v_r
))
**
2
get_beta
=
np
.
vectorize
(
beta_param
)
```
%% Cell type:code id: tags:
```
python
beta_r
=
get_beta
(
range
(
point_num
-
1
))
```
%% Cell type:code id: tags:
```
python
outputing
=
open
(
"../../datafiles/"
+
simname_nospace
+
"_Beta.txt"
,
"w"
)
outputing
.
write
(
"# "
+
simname
+
" Beta parameters
\n
"
)
outputing
.
write
(
"# r200 = {0:.2f} kpc
\n
"
.
format
(
myhydro
.
r200
))
outputing
.
write
(
"# format:
\n
"
)
outputing
.
write
(
"# r (kpc), Beta(r)
\n
"
)
for
i
in
range
(
len
(
beta_r
)):
outputing
.
write
(
"{0:.2f} {1:.6f}
\n
"
.
format
(((
r_beta
[
1
:]
+
r_beta
[:
-
1
])
/
2.
)[
i
],
beta_r
[
i
]))
outputing
.
close
()
```
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
figsize
=
[
9
,
5
])
r_2
=
6.95
ax
.
set_xscale
(
'log'
)
#ax.set_title(r"$\beta(r)$ parameter", fontsize=1.5*font)
ax
.
set_xlabel
(
r
"r [kpc]"
,
fontsize
=
font
)
ax
.
set_ylabel
(
r
"$\beta(r)$"
,
fontsize
=
1.5
*
font
)
ax
.
set_ylim
([
-
1.5
,
1
])
ax
.
plot
((
r_beta
[
1
:]
+
r_beta
[:
-
1
])
/
2.
,
beta_r
,
lw
=
1.5
)
#ax.plot((r_beta[1:]+r_beta[:-1])/2/r_2,beta_r_2,lw=1.5)
#ax.plot((r_beta[1:]+r_beta[:-1])/2/r_2,beta_r_3,lw=1.5)
ax
.
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
lw
=
2
,
linestyle
=
'--'
)
ax
.
axvline
(
x
=
myhydro
.
r97
,
color
=
'gray'
,
lw
=
2
,
linestyle
=
'--'
)
ax
.
axvline
(
x
=
8
/
r_2
,
color
=
'y'
,
linestyle
=
'--'
,
lw
=
2
,
label
=
r
'r$_{\odot}$'
)
fig
.
tight_layout
()
ax
.
tick_params
(
axis
=
'both'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
.
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
#plt.savefig("/home/arturo/Documents/git/LAMtoLUPM_latex/beta_r.png",dpi=300)
```
%% Output
%% Cell type:markdown id: tags:
# F(v) moments
%% Cell type:code id: tags:
```
python
def
moments
(
rmin
,
rmax
):
selection
=
np
.
where
((
myhydro
.
dm
.
r
>
rmin
)
&
(
myhydro
.
dm
.
r
<=
rmax
))
fdv
,
vs
=
np
.
histogram
(
myhydro
.
dm
.
v
[
selection
],
bins
=
50
,
normed
=
1
)
vcenter
=
(
vs
[:
-
1
]
+
vs
[
1
:])
/
2.
m1
=
simps
(
vcenter
*
fdv
,
x
=
vcenter
)
m2
=
simps
((
vcenter
**
2
)
*
fdv
,
x
=
vcenter
)
m3
=
simps
((
vcenter
**
3
)
*
fdv
,
x
=
vcenter
)
return
m1
,
m2
,
m3
def
moments2
(
rmin
,
rmax
):
selection
=
np
.
where
((
myhydro
.
dm
.
r
>
rmin
)
&
(
myhydro
.
dm
.
r
<=
rmax
))
fdv
,
vs
=
np
.
histogram
(
myhydro
.
dm
.
v
[
selection
],
bins
=
50
,
normed
=
1
)
vcenter
=
(
vs
[:
-
1
]
+
vs
[
1
:])
/
2.
vw
=
vs
[
1
:]
-
vs
[:
-
1
]
m1
=
np
.
sum
(
vcenter
*
fdv
*
vw
)
m2
=
np
.
sum
((
vcenter
**
2
)
*
fdv
*
vw
)
m3
=
np
.
sum
((
vcenter
**
3
)
*
fdv
*
vw
)
return
m1
,
m2
,
m3
def
moments3
(
rmin
,
rmax
):
selection
=
np
.
where
((
myhydro
.
dm
.
r
>
rmin
)
&
(
myhydro
.
dm
.
r
<=
rmax
))
npart
=
len
(
myhydro
.
dm
.
v
[
selection
])
m_2
=
np
.
sum
(
myhydro
.
dm
.
v
[
selection
]
**
(
-
2
))
/
npart
m_1
=
np
.
sum
(
myhydro
.
dm
.
v
[
selection
]
**
(
-
1
))
/
npart
m1
=
np
.
sum
(
myhydro
.
dm
.
v
[
selection
])
/
npart
m2
=
np
.
sum
((
myhydro
.
dm
.
v
[
selection
])
**
2
)
/
npart
m3
=
np
.
sum
((
myhydro
.
dm
.
v
[
selection
])
**
3
)
/
npart
return
m
1
,
m2
,
m3
return
m
_2
,
m_1
,
m1
,
m2
,
np
.
sqrt
(
npart
)
fdv_moments
=
np
.
vectorize
(
moments
)
fdv_moments2
=
np
.
vectorize
(
moments2
)
fdv_moments3
=
np
.
vectorize
(
moments3
)
```
%% Cell type:code id: tags:
```
python
patho
=
"/home/arturo/Documents/LAM/LAM2LUPM/speed/"
+
hydro
.
namenospace
v_2_av
=
np
.
loadtxt
(
patho
+
"/Eddington/v_minus2_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt"
)
v_1_av
=
np
.
loadtxt
(
patho
+
"/Eddington/v_minus1_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt"
)
v_av
=
np
.
loadtxt
(
patho
+
"/Eddington/v_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt"
)
v2_av
=
np
.
loadtxt
(
patho
+
"/Eddington/v_sq_av_Eddington_Mochima2_DM_baryons_Rmax=2908.43kpc_no_divergence.txt"
)
v_2_av_m
=
np
.
loadtxt
(
"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_minus2_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt"
)
v_1_av_m
=
np
.
loadtxt
(
"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_minus1_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt"
)
v_av_m
=
np
.
loadtxt
(
"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt"
)
v2_av_m
=
np
.
loadtxt
(
"/home/arturo/Documents/LAM/LAM2LUPM/speed/Mochima2/Maxwellian/v_sq_av_Mochima2_DM_baryons_Rmax=2908.43kpc_Maxwellian.txt"
)
```
%% Cell type:code id: tags:
```
python
r_v
=
np
.
logspace
(
np
.
log10
(
4
*
myhydro
.
gs
.
hsml
.
min
()),
np
.
log10
(
3
*
myhydro
.
r200
),
150
)
#m1,m2,m3 = fdv_moments(r_v[:-1],r_v[1:])
#mm1,mm2,mm3 = fdv_moments2(r_v[:-1],r_v[1:])
m
m
m1
,
mm
m2
,
mmm3
=
fdv_moments3
(
r_v
[:
-
1
],
r_v
[
1
:])
m
_2
,
m_1
,
m1
,
m2
,
sigma
=
fdv_moments3
(
r_v
[:
-
1
],
r_v
[
1
:])
```
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
3
,
1
)
fig
,
ax
=
plt
.
subplots
(
4
,
1
,
figsize
=
[
8
,
12
]
)
ax
[
0
].
yaxis
.
get_major_formatter
().
set_powerlimits
((
0
,
2
))
ax
[
1
].
yaxis
.
get_major_formatter
().
set_powerlimits
((
0
,
2
))
ax
[
2
].
yaxis
.
get_major_formatter
().
set_powerlimits
((
0
,
2
))
ax
[
3
].
yaxis
.
get_major_formatter
().
set_powerlimits
((
0
,
2
))
ax
[
3
].
set_xlabel
(
r
'$\rm [kpc]$'
,
fontsize
=
18
)
ax
[
0
].
set_ylabel
(
r
'$\langle v^{-2} \rangle$$\rm \, [km/s]^{-2}$'
,
fontsize
=
18
)
ax
[
1
].
set_ylabel
(
r
'$\langle v^{-1} \rangle$$\rm \,[km/s]^{-1}$'
,
fontsize
=
18
)
ax
[
2
].
set_ylabel
(
r
'$\langle v \rangle$$\rm \,[km/s]$'
,
fontsize
=
18
)
ax
[
3
].
set_ylabel
(
r
'$\langle v^{2} \rangle$$\rm \,[km/s]^2$'
,
fontsize
=
18
)
ax
[
2
].
set_xlabel
(
'r [kpc]'
,
fontsize
=
18
)
ax
[
0
].
set_ylabel
(
'[km/s]'
,
fontsize
=
18
)
ax
[
1
].
set_ylabel
(
r
'[km/s]$^2$'
,
fontsize
=
18
)
ax
[
2
].
set_ylabel
(
r
'[km/s]$^3$'
,
fontsize
=
18
)
ax
[
0
].
set_xscale
(
'log'
)
ax
[
1
].
set_xscale
(
'log'
)
ax
[
2
].
set_xscale
(
'log'
)
ax
[
0
].
set_ylim
([
52
,
1.1
*
m1
.
max
()])
ax
[
1
].
set_ylim
([
1e4
,
1.1
*
m2
.
max
()])
ax
[
2
].
set_ylim
([
1e4
,
1.1
*
m3
.
max
()])
ax
[
3
].
set_xscale
(
'log'
)
ax
[
0
].
set_ylim
([
m_2
.
min
(),
1.1
*
m_2
.
max
()])
ax
[
1
].
set_ylim
([
m_1
.
min
(),
1.1
*
m_1
.
max
()])
ax
[
2
].
set_ylim
([
m1
.
min
(),
1.1
*
m1
.
max
()])
ax
[
3
].
set_ylim
([
m2
.
min
(),
1.1
*
m2
.
max
()])
ax
[
0
].
set_xlim
([
0.5
,
3
*
myhydro
.
r200
])
ax
[
1
].
set_xlim
([
0.5
,
3
*
myhydro
.
r200
])
ax
[
2
].
set_xlim
([
0.5
,
3
*
myhydro
.
r200
])
ax
[
3
].
set_xlim
([
0.5
,
3
*
myhydro
.
r200
])
ax
[
0
].
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
linestyle
=
'--'
)
ax
[
1
].
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
linestyle
=
'--'
)
ax
[
2
].
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
linestyle
=
'--'
)
ax
[
3
].
axvline
(
x
=
myhydro
.
r200
,
color
=
'k'
,
linestyle
=
'--'
)
r_v_c
=
(
r_v
[:
-
1
]
+
r_v
[
1
:])
/
2.
ax
[
0
].
plot
(
r_v_c
,
m1
)
ax
[
0
].
plot
(
r_v_c
,
mm1
)
ax
[
0
].
plot
(
r_v_c
,
mmm1
)
ax
[
1
].
plot
(
r_v_c
,
m2
)
ax
[
1
].
plot
(
r_v_c
,
mm2
)
ax
[
1
].
plot
(
r_v_c
,
mmm2
)
ax
[
2
].
plot
(
r_v_c
,
m3
)
ax
[
2
].
plot
(
r_v_c
,
mm3
)
ax
[
2
].
plot
(
r_v_c
,
mmm3
)
ax
[
0
].
plot
(
r_v_c
,
m_2
,
lw
=
2
)
ax
[
0
].
plot
(
v_2_av
[:,
0
],
v_2_av
[:,
1
],
"k"
,
lw
=
1.5
)
ax
[
0
].
plot
(
v_2_av_m
[:,
0
],
v_2_av_m
[:,
1
],
"r"
,
lw
=
1.5
)
fig
.
text
(
0.3
,.
9
,
r
"$\rm"
+
hydro
.
name
+
" $"
,
fontsize
=
30
)
fig
.
text
(
0.35
,.
87
,
r
"$\rm Hydro $"
,
fontsize
=
25
)
ax
[
1
].
plot
(
r_v_c
,
m_1
,
lw
=
2
)
ax
[
1
].
plot
(
v_1_av
[:,
0
],
v_1_av
[:,
1
],
"k"
,
lw
=
1.5
)
ax
[
1
].
plot
(
v_1_av_m
[:,
0
],
v_1_av_m
[:,
1
],
"r"
,
lw
=
1.5
)
ax
[
2
].
plot
(
r_v_c
,
m1
,
lw
=
2
)
ax
[
2
].
plot
(
v_av
[:,
0
],
v_av
[:,
1
],
"k"
,
lw
=
1.5
)
ax
[
2
].
plot
(
v_av_m
[:,
0
],
v_av_m
[:,
1
],
"r"
,
lw
=
1.5
)
ax
[
3
].
plot
(
r_v_c
,
m2
,
lw
=
2
,
label
=
r
"$\rm Data$"
)
ax
[
3
].
plot
(
v2_av
[:,
0
],
v2_av
[:,
1
],
"k"
,
lw
=
1.5
,
label
=
r
"$\rm Eddington$"
)
ax
[
3
].
plot
(
v2_av_m
[:,
0
],
v2_av_m
[:,
1
],
"r"
,
lw
=
1.5
,
label
=
r
"$\rm Maxwellian$"
)
legend
=
ax
[
3
].
legend
(
loc
=
'upper right'
,
ncol
=
2
,
shadow
=
False
,
fontsize
=
font
)
frame
=
legend
.
get_frame
()
fig
.
tight_layout
(
h_pad
=-
2.7
)
ax
[
0
].
text
(
22
,
250
,
r
'$\int_0 ^{v_{max}} v f(v) dv$'
,
fontsize
=
17
)
ax
[
1
].
text
(
22
,
70000
,
r
'$\int_0 ^{v_{max}} v^2 f(v) dv$'
,
fontsize
=
17
)
ax
[
2
].
text
(
22
,
3e7
,
r
'$\int_0 ^{v_{max}} v^3 f(v) dv$'
,
fontsize
=
17
)
ax
[
2
].
text
(
170
,
1e7
,
r
'R$_{200}$'
,
fontsize
=
17
)
ax
[
0
].
tick_params
(
axis
=
'y'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
[
0
].
tick_params
(
axis
=
'x'
,
which
=
'major'
,
labelsize
=
0
,
size
=
5
,
width
=
1.2
)
ax
[
0
].
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
ax
[
1
].
tick_params
(
axis
=
'y'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
[
1
].
tick_params
(
axis
=
'x'
,
which
=
'major'
,
labelsize
=
0
,
size
=
5
,
width
=
1.2
)
ax
[
1
].
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
ax
[
2
].
tick_params
(
axis
=
'both'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
[
2
].
tick_params
(
axis
=
'y'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
[
2
].
tick_params
(
axis
=
'x'
,
which
=
'major'
,
labelsize
=
0
,
size
=
5
,
width
=
1.2
)
ax
[
2
].
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
ax
[
3
].
tick_params
(
axis
=
'both'
,
which
=
'major'
,
labelsize
=
15
,
size
=
5
,
width
=
1.2
)
ax
[
3
].
tick_params
(
axis
=
'both'
,
which
=
'minor'
,
labelsize
=
15
,
size
=
3
,
width
=
1.2
)
plt
.
savefig
(
"/home/arturo/Documents/git/LAMtoLUPM_latex/moments.png"
,
dpi
=
300
)
```
%% Output
%% Cell type:code id: tags:
```
python
outputing
=
open
(
"../../datafiles/"
+
simname_nospace
+
"_Moments.txt"
,
"w"
)
outputing
.
write
(
"# "
+
simname
+
" Statistical moments of dm velocity
\n
"
)
outputing
.
write
(
"# r200 = {0:.2f} kpc
\n
"
.
format
(
myhydro
.
r200
))
outputing
.
write
(
"# format:
\n
"
)
outputing
.
write
(
"# r (kpc), 1stmoment, 2ndmoment, 3rdmoment
\n
"
)
for
i
in
range
(
len
(
r_v_c
)):
outputing
.
write
(
"{0:.2f} {1:.6e} {2:.6e} {3:.6e}
\n
"
.
format
(
r_v_c
[
i
],
m1
[
i
],
m2
[
i
],
m3
[
i
]))
outputing
.
close
()
```
%% Cell type:code id: tags:
```
python
``
`
%%
Cell
type
:
code
id
:
tags
:
```
python
```
...
...
Simulations/LUMINOSITyinge.ipynb
View file @
dcffaa00
This source diff could not be displayed because it is too large. You can
view the blob
instead.
Simulations/SFR_SIMUSSS.ipynb
View file @
dcffaa00
...
...
@@ -15,7 +15,7 @@
},
{
"cell_type": "code",
"execution_count":
70
,
"execution_count":
2
,
"metadata": {
"collapsed": true
},
...
...
@@ -66,7 +66,7 @@
},
{
"cell_type": "code",
"execution_count": 3
8
,
"execution_count": 3,
"metadata": {
"collapsed": false
},
...
...
@@ -86,7 +86,7 @@
},
{
"cell_type": "code",
"execution_count":
115
,
"execution_count":
4
,
"metadata": {
"collapsed": false
},
...
...
@@ -97,12 +97,14 @@
"del_SF1_dp = r_SFR(\"../../datafiles/SFR/SF1_del_poly.txt\")\n",
"del_SF1_di = r_SFR(\"../../datafiles/SFR/Mo_SF1_Del_Iso.txt\")\n",
"del_SF1_mi = r_SFR(\"../../datafiles/SFR/Mo_SF1_Mec_Iso.txt\")\n",
"del_SF1_di_hr = r_SFR(\"../../datafiles/SFR/SF1_ISO.txt\")"
"del_SF1_di_hr = r_SFR(\"../../datafiles/SFR/SF1_ISO.txt\")\n",
"del_SF1_dp =r_SFR(\"../../datafiles/SFR/Mo_SF1_Del_pol.txt\")\n",
"del_SF1_mp =r_SFR(\"../../datafiles/SFR/Mo_SF1_Mec_pol.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 1
17
,
"execution_count": 1
3
,
"metadata": {
"collapsed": false,
"scrolled": true
...
...
@@ -875,7 +877,7 @@
{
"data": {
"text/html": [
"<img src=\"
3zN1x/H8c+9udkSYkUGtbfYoxSlsWkpqlSt2tSmNVp7lWqt1qoapWhttUprq6qtqFFq1F6xI/e+fn+cDJqE6KWRn8/z8biP5N7vuOf7TeS+nSmilFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRKgoaKyF4RuS4iZ0RktogEP+YYNxEZLyIXI49bkoBjlFJKKaXUc2KwiBQUEZuI+IrILBHZ9ZhjxovIbjGhL5mITBeRnc+wjEoppZRS6hnKLyJ2EUkez3Z3EbklItUfeC2ViISLSKlnWzSllFJKKfUs9BCRPx+xPURMQPT/x+t/iEj7Z1UopZRSSin1bISKyA0RqfCIfV4REwDd//H6LyLSK479LSISJKZ5WR/60Ic+9KEPfSSdR5CYz3H1f6y6iFwVkdcfs1+IPFkNYJCIoA996EMf+tCHPpLkI0jU/613xIS/0ATsG1cfwNQick/i7gPoKyKcOnWK69ev6+Mfj3bt2iV6GZ7Xh94bvTd6X/Te6L1JvMepU6eiAqCvcxFDPa/ai8gVebIBHOPEjPpNLyI+YkYB74hnX18R4fr166jYOnfunNhFeG7pvYmf3pu46X2Jn96b+Om9idv169c1AP6fc4ipvQuLfNyI/PpgILwhIvUfeO4mImNF5FLkvksl/ipiDYCPoH944qf3Jn56b+Km9yV+em/ip/cmbhoAlbM0AD7CypUrE7sIzy29N/HTexM3vS/x03sTP703cdMAqJylAVAppZRKYjQAKmdpAFRKKaWSGA2AylkaAJVSSqkkRgOgcpYGQKWUUiqJ0QConKUBUCmllEpiNAAqZ2kAVEoppZIYDYDKWRoAlVJKqSRGA6BylgZApZRSKonRAKicpQFQKaWUSmI0ACpnaQBUSimlkhgNgMpZGgCVUkqpJEYDoHKWBkCllFIqidEAqJylAVAppZRKYjQAKmdpAFRKKaWSGA2AylkaAJVSSqkkRgOgcpYGQKWUUiqJ0QConKUBUCmllEpiNAAqZ2kAVEoppZIYDYDKWRoAlVJKqSRGA6BylgZApZRSKonRAKicpQFQKaWUSmI0ACpnaQBUSimlkhgNgMpZGgCVUkqpJEYDoHKWBkCllFIqidEAqJylAVAppZRKYjQAKmdpAFRKKaWSGA2AylkaAJVSSqkkRgOgcpYGQKWUekI37t3gvv1+YhdDvcA0ACpnaQBUSqknVPmbyszaOyuxi6FeYBoAlbM0ACql1BPKPjY7o38ZndjFUC8wDYDKWRoAlVLqCfkM8WHIhiGJXQz1AtMAqJylAVAppZ5A2N0wpJ/QZ22fxC6KeoFpAFTO0gColFJP4I9LfyD9hM4rOyd2UdQLTAOgcpYGQKWUegI/H/8Z6Se0XNIysYvy9Pz5JzgciV0K9QQ0ACpnaQBUSqknMHvvbKSf0HBBw8QuytPhcICvL+zfn9glUU9AA6BylgZApZR6AiM3j0T6CbXm1ErsojwdYWEgAps2JXZJ1BPQAKicpQFQKaWeQJeVXfAa7EXFmRUTuyhPx+HDJgCuWpXYJVFPQAOgcpYGQKWUegL1v69PyJchvDL1lcQuytOxYYMJgAsWJHZJ1BPQAPhiqCciG0TkuojYRcT6mP3Xicg9EQkTkRuRX1vHs68GQKWUegJlvy7Lm3PfpOCEgoldlKdj3jwQ4fjYgYldEvUENAC+GCqICYFNJWEB8GcR6Z/Ac2sAVEqpJ5BtTDZ6rO5B9rHZE7soT8eYMSDCB3VSJHZJ1BPQAPhiKSsJD4ADEnhODYBKKfUEvAd7M3nHZIJHBSd2UZ6OXr1AhF5VPRK7JOoJaAB8sTxJALwoIpdF5ICIDBUR73j21QColFIJFLUKyLrj6/Ab5pfYxXk6mjUDET4uZ8GhcwEmGRoAXywJDYAlRCRF5Pf5RGSniHwbz74aAJVSKoEOXzqM+0B3Dl86jNtAt8QuztNRtSoRVgtDSwl3799N7NKoBNIA+GJJaACM67hwEXGPY5uviNCuXTs6d+5M586dWblyZWL/Xiul1HNp+5nt+I/w50zYGaSfcN9+P7GL5LxChTie2saYYsKlW5cSuzTPjMPhSPI1nCtXroz+rG7Xrp0GwBfIvw2AZcQEQI84tmkNoFJKJdDaP9eSdUxWrt25hvQTrt9N+n87HYEBrMwifFVAOHH1RGIX55kZsXkEbZa1SexiPDVaA/hisIqpvasoJgB6RT63xLFvWhGpFLmPiEgeEdkuIt/Fc24NgEoplUCLDi6i0MRChEeEI/2Ev8P+TuwiOcdux+HiwsRiNr7P58L+8wlfDs7usCdKDejNezfZd34fF25eeKLj6syrw2vTX3tGpfrvaQB8MTQWEYeY8Gd/4PsyIpJezFx/pSL3zSAi20Tkqpj5/w6LDgJRSqmnYsbuGZT9uiwArgNcOXL5SOIWyFkXLoAIn9YOZHUud7ad3pbgQz/Z9AnvLng3+rndYef8zfPPopScv3k+unay9NTSeA32Is0nabgdfjvB58g5Lie5xuV6JuVLDBoAlbM0ACqlVAKN2zaOGrNrAJBiWAr2nNuTyCVy0t693PV2Z1zbomzN6snaP9cm+NDK31Qm65isANy9f5f639fHZ4gPN+7deORxYXfDeH/5++T7Ih/bz2xP0HtVm1WNrGOysubYGnyH+nL97nVyj8/NtF3TEnT8nft3cOnvQvKhyRO0f1KgAVA5SwOgUkol0NCNQ2kwvwEAgZ8GsuXklkQu0WPUrw/Hj8e/ffVqzgYmZ9bHtdib0YvFhxYn6LR2h50Uw1Ig/YSwu2G0XdaWwhMLk3NczseGsqk7p9KyVSCjWxV4qAYxPvvP78djkAd5v8iLzxAfeqzuAcDYbWMpPrk4q4+uZvnh5Y88x66zu3Ad4Ir0E26F30rQNT7vNAAqZ2kAVEqpBOq5pietl7YGzIogPx77MZFL9AgOB7i7w+rV8e8zfTo7s/uydnw3jgV6MXvv7ASd+sCFA3gO8iTtiLRs/GsjQZ8GsebYGkZtGcWr01595LFtl7Vla6W83M6fB49BHly+ffmR+zdZ1IQWS1rw25nfCBgZwOnrpwG4ducaXoO9sPa3UmxysVjHbT65mVVHV3E7/DYzds+gxJQSuA5w5ejlowm6xuedBkDlLA2ASimVQO1/aB9dA1VgQoEE15glikuXQAS+/z7eXRwDBjCnoCt/LJjM2dSeTPptUoJO/dXOryg9tTRVvqlC+x/a4zHIgzv373DuxjlcB7jy55U/4z222ORinCuSC6xWKo4vwWdbP4t3X7vDjtdgL3b+vTP6+YO2nd7Gj8d+xHeo70NTvKw5tgavwV6kH5We7GOz0/6H9rRc0pL0o9Kz4cSGBF3j804DoHKWBkCllEqgRgsbMXD9QABKflUywTVmiWLvXhMAp06Nd5dbTd5hcGnh9i+buObrzqgtoxJ06uaLm9NjdQ96remF12AvQmeERm8LnRHKmF/GmCe3b8P8+dHb7kXcw32gO+EB/mCxsGZ8N3KOyxnv/Hynrp/C2t/6yAmqb4XfwtLPEj0i++yNs6QYloJpu6YRYY/g5SkvY+1vjW4ynrt/boKu8XmnAVA5SwOgUkolUM05NRn9y2gAKsyowOQdkxO5RI+wYoUJgKNHx7vLxdJF6P1Wajh4kLvutuhw+zh5xudh4cGFzNs/D+knDNs4zGw4eZKvxreg3nf1zPPp000ZfvoJgJ1/7yTtAB/zWuXKhPfoht8wv3hr5db+uZZMn2d6bHkyfp4xegDL51s/p9y0ctHbDl48iPtAdzb9tYlac2o9ssYxKdEAqJylAVAppaLcugX580M8fxNfm/4aU3eaGrUHw+Bz6auvTNAaGH+ou5zRn749isHJkyDCh6t6PPa0t8JvYe1v5dT1Uxy5fATpJzGjeVu0wO7mylutUuFwOAivWolLQSk5mtGX9xY0ZeD6gTQdXAy8vU35SpWi04pOvDP/nTjfa8L2CVSaWemxZfri3ZysGtQUgBJTSjBx+wQIC4veHjVnYNtlbem+uvtjz5cUaABUztIAqJRSUY4eNaFpxYo4NxedVJTvfzd96hrMb8CQDUP+y9I9mYEDzbV0jyfwOBzc8bDx6eRm0f0FO89v+djTbju9jVTDU0UvrTZj9wzTNy8iAtKmJbxlc667C4fnT+aui9BkQGHC/P0Y1u1lpJ/wdb+aJmQfOQKurhw6vQf3ge5cuX0l1nt1WdmF9j+0j12Inj1NE3ekvzOmYlOl3By/ehzbABthk8ZBQABcfniAyaD1g2i4oOFjrzEp0AConKUBUCmlovzyiwlNvXvHuTnH2BysPmpG1bZY0oLea+Pe77nQurW5ltat495++TKIMHvTBLhzB0R4f1q9x5524m8T415RY/NmSJkS7t/ni5rB3HMRjmRIZvr3NW+Oo0cPpuyYwrl+3aF2bbDbzSjlQ4cI+TIkzv6U1WdXj+lPGOXgQXNdWbPCtWtw7hyIsC0kFYM3DKbyN5WhXj3w8IDGjR86dOrOqZSfXv6x15gUaABUztIAqJRSUZYuNeGibNk4Nwd+GsjWU1sB6LSiE51Xdv4PC/eEXn8dAgOhQYM4Nzt27uSqh8U03zoc2K0W2o6r8tjTtl3Wlq6rusbe0L17dODqurILY4sKJ0Z+ZLaNHw8VK5rvW7eGDz4w3+fKBT/8QO+1van/ff1Yp8wxNgcrjvyjNrZnTxMgK1WChg1hzhwcFgsH/K0kG5KMNUdWQ5o0MGcOJEsGv/4afejBHu/xfvOgx15jUqABUDlLA6BSSkWZOhWCgkzt0d3YI0+TDUnG7xd+B6DXml60XPL4JtNEU6QIlC8P1avHufna3Bns8pfolTvueXvQamipx5625FclmbF7xsMv2u2QOTMsWADAnnN7+GTTJzHbt241oczhgNBQmBw5eKZ6dRgzhq2ntpJiWIqH1ha+b7+PbYCNY1eOmRdatID27SE42AT106fBywuKFeNeuTJcdRfTXLx7twl+4eHQqBF06xZ9ztv5crI0t+2x15gUaABUztIAqJRSUYYPh7fegtSpYcvDq3zYHXakn3Dy2kkABm8YzDvz36HhgoYcv3o8EQr7GIGB0LYtlCkT5+bjA7uxIpdb9PPbqZPTsnf+R57S7rDjPdibvef2Prxh+XJIlw7u3Yv7wFu3wGqFU6cgffroUcF07AgdO2J32Ek7Ii3rjq+LPuTo5aO4DnA1ofDMGXB1hUKFwN/fhDuAjz8GERyRo41vXT4Hn34K1aqZ7YsXQ6ZMJnjeu4fDzY0rHsL1W7H7GyY1GgCVszQAKqVUlO7dTS1TzZowdOhDm67fvY70E67duQaY6UaCRwUj/eT5mw7m/n0TuMaMgYIF49zlYNPXmftq2ujnNzKko2WnrI887eFLh3Eb6EZ4RPjDGypXhr59H12mXLmgSxfw84MbkesFjxkTXUPZZFGT6Em2AZYcWkLOcTnNk6FDTRNyeDj8/XfMOW/cgObNzVdPTzhwAKpWhVGR8xneuWNqA3fsMDWDPj5c87Dwy6Lxjy5rEqABUDlLA6BSSkVp0gT69YMvv4xVc3bq+imknxBhjwBg0m+TkH6C6wDX568p+MwZ05dx5UrIkiXOXQ68lp+Z7+SLfh6WMzMtWwQ88rRz98+l0MRCD7+4Ywe4uT0czOLyzjsmlPbpE/PaDz+YYAhM3z2d4pOLAxAeEU7BCQX56KePTO1dtmymT9+jZM9urtfP76F+f9SvDx9+CNOmwSuvsL1IEKtbVXj0uZIADYDKWRoAlVIqSrVqZsDCX3+BzQZXYpoKD1w4gPdg7+jns/bOQvoJPVb3iB2KnoLz58+TJUsW7t+///id/2n7dtPn7rffzNc4/JkjLR1D/aP//ocVzkfrhn6PPG3XVV3pOO+9mBq89eshRYpYtaVxGjnS9K08fz7mtUOHzEhgu50TV0/g0t+FG/duMHD9QPJ+kdesALJnj6nFu3Pn0ed/7TUT9NzcHu6/GdU83a4dtG/Phi512JctBfwZ/3J1SYEGQOUsDYBKKRWlWDGYN898ny/fQ7VOv5z6hYCRMTVkm/7aRLlp5fjzyp/YBti4c/8xAeUJbdq0CRHh6NGjT37whAlQtCj88YcJXQ9wOBzgcHDT00b+PMKePXsAOBVSglZveMR1tmilp5Zmf/1QaBlZ41mwoOk3mRCnTsVel/juXbBYTC3i8OEUHBjMvP3zSDYkGZv+2hRzLeUTMHVL48amprB48Ydfjxqg4ukJU6awf8dKdgRZcbi4wKpVCSv7c0gDoHKWBkCllIqSKRP8/LP5/sMPzTQjkX489iPZx2aPdYjD4SDV8FSsP/YL8Sxp+698++23iAgrV658sgNv3zYjZWfNgrNnQYRrF2IGZ+TPn59fFy3CbhE8sghr15ol1HZlrcD7lS3xrst7334fr8FehIWWNs3KV66YJt2zZ//1NQKQIQO89BIEB3PHw0bV91NR6qsHRiM3bQq9ej3+PH36mGbv99+PvW3ECLPtt9+IsEfgM8SHaxXLmD6ISZQGQOUsDYBKKRXFxwf27TPf//yzmRIm0vwD8ykyqUich1X+pjJBtcayIe4lbf+VESNGICKMHTuWffv20apVq4Qd+MknZrSs3W5G34rQ7I3TOBwOjh49ioiwvGtXjvlZkDTC3LlzAdictTYfvCbx1mTuPrsbnyE+OPLkMWFq/HjIkcP5Cy1XzgTWK1fY1yCUmfmEBQcWxGzPlQuWLHn8eSZONOWaOTP2tsuXzSCSyGbkijMrsr56CI7IKWKWHFpCiyUtnL+W/5AGQOUsDYBKKQWmOVLErCwBZn1ci8WMqAW+3vV1vKtI9Fn7EdY3G/Ptt0+vOB06dEBE6NixI5988glWq5Vr16498pgjR45wISiI6II4HNgtVgokL03Pnj0ZP348IsLS6hVZmk0QN+GLL74AYHXmpgwoI1y8dTH6fDP3zIxeoWPSb5Mo9/WrZh3flClNOG75FAa/rFpl+ioC539Zyz1XFyIuXzLbrl41P4MH+w3G54cfzM/v8OHH7rrr7C6GVk/B1lcyAtBtVTeyjcn2ry8hMWgAVM7SAKiU+r/ncMCgQfFPUweYPmoi0YGP8HDz/PRpAMb8MoY3vn0jzkO/3DAPaVmYL78071WlilmlzBm1atUiS5YsVK1alTp16pjgtnRpHNfm4K+//gKgd7duhIvw46RJ0dtvuPqSTyz4+vry6quv4uXlxaqQLIwq5YqIMGDAAAAWZOjApyUkek7DszfOkmxIMtKOSMvt8Ns0W9SM/vM7mHvSvr35OmuWcxcZl2LF4O23zSjsLl1M/72EOH4c8uYloe3wZyd+yub0psaz2qxquA5wjR7hnRRoAFTO0gColPq/d+GCySv79z9ip507Tc3Wg9KmjZ5SZND6Qby74N04D52x4gDS25PBQ+yEhZn32rPHdI8rWDDBmeQhRYoUoUWLFmTLlo0MGTKQPXt2unaNvQTbunXr8PDw4Nq1azTMlYsbrq6kTZOGq1evAnDGloLybsUoXrw4IkKjRo3Ykc6HTm+kQETo0KEDDoeDSf7tmVLAlf3nzU1qtqgZtefWJv+X+Wm0sBFeg73Yt2K6uUerVj0Ujp+qWbNMkOvTxwzcqB97ibinwbFhA6eTW9jx9w4yj86M9JPnc0LveGgAVM7SAKiU+r+3bZvJK48c9Ll6tZlL7kEFCsDChQD0WN2DtsvaxnnoV9PCkY9cafnhUU6cMO+1dq1ZTETETMuXYAcOwJQppEuXjtmzZ2O1WrFYLEyYMIFChWJPN/PBBx8gIowYMYKWFgt3X3mFgJwBrFu3DofDwX6LOzXdurFo0SJy5MjBzJkzuehhpVajQFxcXGjQoAH79+/nPbGw5iVXVh5ZyTvz3yHV8FT8eeVPvt33bcxk1/Pnm/6F9+7B9OlPcFH/0h9/mJq9Z+HECSIswvjNo7H0s+AzxIc1x9Y8m/d6BjQAKmdpAFRKJWkOh4PFixdHj15dvRqOHDHbLl82tW9z55og9tVX5vmhQ2b7+vVm0Q/A1DyV+sdauFHzAgJtlrXhgx8/iLMM/fqBtMlLpQ6L2bXLvNe8eWbsggisWxfnYXEbPBh7SAgWi4XBg//CZnMlV65c/P3331itVq5cucK9e/eYOXMm9+/fp2DBgpQoUQJvb2++9fMjrH1LpK8QUL4zJ0+eZLMIb8k0IiIgPDyc9QsWgAgvN8tN9uzZqVSpEosXL6aMCH8ls+A5yJMq31Th7zAzsbPdYWfb6W2mbKNGQa1aT3Axz7HwcOxWC3VGFsNniA8VZlRg4m8TE7tUCaYBUDlLA6BSKkk7ffo0IsLBgwcByJkTevY02zJlMrV+w4ebIDZggGnpdXc3XfyGDAEXF4goWMRMbRKdBiO1aIGjV28AQseHUuuzeg9t/v13EzIbNwZbvbfJ13Ywa9ea9/rySxM4RWByAlaK2759O6NHj4b69bmfKhUWiw1Pzwjc3bPTuHFjpk2DfPlKUapUKUJDQxER+vTpg9VqZefOfVitVo6nS8eK/u9i7W3D0jEla9evZYW401wmcfmy6ea4Y+QXnPAVClcpTM2aNSlcuDBjxowh0FIUROg+tX28U8HQsSNh73XixIkn+Qk9v26m9aNkM6HY5GK0Xtr6oaXoopwJO8OUHVMSoXSPpgFQOUsDoFIq0TVr1oyJE/9d7cuGDRsQEWbMmBE9jqNiRbMymQgMHgxt2pjBpK1amQGyIia8vfsu+MtZHBaLmffvH8N4I/r0ZVGqpixdChm6v4Tl5dxs2WK2bdwIXl7QoYMZr5Ch4UAC2jXgu+/M+QcOjAmePWLnCm7cMCvPXb1qZmwpUaIc3t7e2PPlw2Gx4GpJz+HDINKIMWNm4O8PtWrdpG3bttSqVYtevb5DRChcuDCd24fzWrYW2N3caDikCCkqvYq0SkPdUQ2ZJ6noIiM5etQE1XlF3uDrXEJQcBC9evXipZdeonPnroi0I0xsfNmuXfw3+403WFjucx61S1Jys3AI9WoLjRc2ZsTmEdSeW5vJOyaTflR6gkcFcyv8FoM3DCbV8FTxh+JEogFQOUsDoFIq0RUvXpxukXOyPYrdbrqFgQlQBw7AtGnTEBHef/99pk6F5MkhVSpYvNiEr3r1oHJlyJ37HvnyfUn//nZETLNw0aLwls9yLvhlY9asmEUt7t41NYRr601khVSiQQPwbp0CKZiOTp1MuEye3CxvmyEgnAppd1OlywK8uoRET0fXqRNUrDgJF5cD1KoFy5bdJleumFlKRo2KqZXs3v1XRLwJ8s9AhM0GIhQJKAxA4cImKHp4mBXR7t6Frl3NSnXe3vUZOnQos9I2BRHC0/rj1s8FV7+PkHzF8OvtzxTJxBC3vmzfDqGhsCttWhoVtCAifPPNN3h7e/P663UQGcEuSwCflS4NQM+ePTn/z+lXChTgy0oLadLkqfzYE11E3Tp8WMHK8E3DWXBgATnH5STtiLRM/G0iWcdkZf6B+ZT8qiTST6KbxJ8XGgCVszQAKvWCczgcREQk3vQX33wDKVMG0PCBVTfiM22aab69eBGqVp2Nr28YnTt/jI+PDyVKlKB+feje3TTrNmpkloDNnPkPcuRwUL36GkSE8uWXImIGmfr4wIrSg1nu8xYpU5oavdOnb5Ip08ckSzaYOp6zOJcmL35+YGlhQ/LYSJ/eTvfuUKOGCYktvb/hqGRm8IQ/sHzkxqAh9xGBN944hsViI02a98md+z6enukICPiFNGlg2TIzjV67dpAihR1X12pkz96RQl4tuWNx4aJ40bVMKGAWwYha4CJDBujd2wTB3bvBanXw5Y/L2ZvaRpfM31Ot3xcUGlcad/fZuCUrhvUjG6OT5WJqis78+CO8nOsyERYhb5GUiAg7duxARMiZMwSRuXxnfZkxQUGEhYVhsVj47rvvYm6+3Q4pUvBRjV289daz+m34j3XtysLQ9Kw7vo495/Yg/YRc43LhcDjovbY3oTNCcenvQupPUrPq6PO1bJwGQOUsDYBKveB++uknSpYsmWjvX7HiPUQsVKhQAYCuXbty8OBB7HY4ePAi/fubIHfkiGlqdXODjz+OQMSDTJnmki7dO2TK1BAXFw9Spgxn40azjK+HB7RocRARC66uP/LGG30Q8cbHpxQFC0L3rAt4SU5wo3IdesgwKlY0Y0BCQqZhtaYnc+bCNMhVA0fKlKRKdQVpI0g2IVmyU9hssClyqdoN2ZpwXXzYsPke0k9o2+Msbm4QFNQUL6/MpEiRDVfXnxER2rT5jIkTHbi5jcbPrzOjRn2Gv39rvLwyc/bsOcaXH8EOsbDHYmFtx46AGagiAlu3xky/Fzl1H8WKwSutemEXYfzEJbg2L0+FPqMpUGA97u4Z8GoYyODsGVmU5j3mzYN3gkbweyorRUoURUS4efMmIoKLiwsivzDI0oLpNlt0s3rUHIEREQ7uzZwLQUG8U+cu6dM3Zdu2bbF+lrdvw6VLz/535qkZPdokeeDGvRtIP4keCLL77G6kn1BwQkFqzanFiM0jErOksWgAVM7SAKjUC27y5MmkSJHimZ3/6FHztVq1aiyMnFLlQUFBfyIihISEEBYGKVOmpU6diaRIcRcRT3Lm3E/16jdJmfIdRNLQvKaOKzIAACAASURBVPk8rFazpFnbtl3x8nqZ0NCZuLn5UrDgTsLDoW7dM4jcpnLlhoi4IdKGokVLI/IpFktyqmd4hftiYZl3XciShc+rruL332HOHBCpTrVqQzhy5Ajp3dxAhDcqrUM6WUlbJC0VKqyjZEkYN24cnh4enBABEY7sv4v08qJ26wNkzLgdi8WdfPl24eLiikh1RFxp2LARe/fuxcPDk8aNO1CxYkXy5AnhwIHjADj69mV3SAjXSpaECRMAMy/15Mlm9PLmzWZltJs3zb3r3h0qlX6FI35Ck4VNsPa1Ib6naNXqKBaLDddcGWhXwYvfUr3G2LEwNrggozPnIDS0JsmTJwfAz88PEcHD4yzvymTWi9CjRw9EhAYNGnDp0iXS+AXxl+dLMGkSVapcRsQaa05Ch8NB375HqVv3mfwaPRsrVkC2mBVAvt71dfRSeA6Hg+xjs9NnbR/6/tyXRgsbJVYp46QBUDlLA6BSL7ghQ4bwtP8O/Pmn+XrggGmOvXYN/PzSkjFjHwAuX3YwY8ZqNm36DZF1iAj+/v68/PKdyO+7M3HiAUSEcePGMW3afKzWzAQH16VVqzakTr0YEaFMmTL4+/uzdetWypcvz4TI0JQmTTZEMuDu7k727JOwWv1xc3PDaj2MVb7jeNpApopwz+oOIvRs3pw7d+5w8eI1XFzc2LfPdDRs/O673LdY+KTNSKwf2ihSowhjRk9h6OAx+Pn5sXH6dO5brSDCpT2nkS5BFK65BA+PYFKmHE6WLFCgQDlEhEyZWpE3b15Gjx5NpUqV4r5xdevCsGHQtCl8/HGcuzw4FmHZMuhf1I8VBbMh/YQSk0vw9dewd+9tEw4sVoo1DuCmqwft24Rz0M9G03y9qFKlDalSZaNwYUiePBuuru689JKd4rKVS1Yr76dMSZfgYGrlysWSJUv4QISjFjfu3bxJSMhcRKzkz5//oXItWrQIq9VG+fJmuZWrVyEs7F/+Av1Xzpwxo4Nu3Ypz8/7z+7l8+zLf//49BScU/I8L92gaAJWzNAAq9YKy2+0AdO7cGRFhfxzLZPybkY83boDN5mDfPpg27SoiN/juu6uRH1Z1uXoVMmeujIgLpUpVxt19JiIZsFqt2Gx/ICK8+eabLFq0CBHhrbfeonXr1tSr15HPP59N0aJF6dt3KHny5MHDwwMR4fz58/Tt25e6dety4sQJXFxcCA39ktGjR9OuXTguLn4EBgYSFOTgA8/ROLJlw9OSk9UZynPBwwNfX1+KFClC69atCQkJib6WgwcPclKE1XnyUL+2hTqt6rC5SBFmJEvG4sWLYfJk7hQrxmURTi1bhbTJi0dICXLkqIevr4PkyaFjx2G4uvowduwRrFYrlSpVYtiwYbFv3P37pq177VrT8a9Fi8fe69MXbvBjJmFPt/64D3Rn5OaR0du8vU0/v+ItPueqh5X2pTpz3yI0qHGO0qX7Y7GU4sMPwc3tZfz9s1G8OPjIdU54ebNZhDPBwdwS4WDmzIRZXXnFPRt9+/bF378Zfn5NsFqtbNt2nmvXICIigty5cyMiFChg0n/79vDRR0/86/PfcjjMyiaRq73E5/Clw7gPdOe+/f5/VLDH0wConKUBUKkX0OHDh/H398fhcPDOO+8gIixfvvyhfdq1a8eQIUMAaNKkCStWrIjedv8+fP65GRfwT61ajUDkXWbOhDx56iDSmaZNf438sMrP3LkXERFstmV4e6ckOHgQXl5vIiL4+MyJbg4eMWIEgYGB+Pv7kyVLFpYuXcoff/yBu7s79erV4+OPP8bb2xtvb28cDge//voryZMnZ/Lkybz88ssx19ppPAe8UvFbUBCDM03mpjUZ/PQT6dN3oEbhN6jr4sLvv//OwIEDKVGiRHQtYpTVgYH8ZBFu24SJLRpyz2IhTIR7V6+aSZE//pjTXl581aABlmb5kRB3PvnkHJEtw+zde5758+fjcDhInTo1IsIvv/wS+8YtXmxGedjtMG4cVK/+2J/jL3/8xE03C+zZw7z987h8+3L0towZQxDxoUPnuyzP7sGutC7sSJGFDz8Eb++fSZ9+GOfOmSbvrFlDef11U9733uuIiDBz5jGyWK187+1Nq9wfkDHjLjw9PXFxSUFQ0BoKFixIwYLfMnKkg6FDh5I5c2a8vALJnHk9AA0amClywNQG3n9+stPDypY1EzY+QoQ9As9Bnhy4cOC/KVMCaABUztIAqNQLaOzYsYgIFy5coGLFiohIrHn4ihUrRoECBTh37hwWi4XcuXNHjxaeMmUjIsvYvj1m/6tX4dSp07i5eSPiRps2f+Pi4oW7ewkyZfoGkdRYrZ7UrLkCkSz4+NzFYnEjICCUTJk+wGr1JXPmrqRJkwYvLy+aN29Oly5dcHd3x2azERYWht1ux9fXl2TJkvHdd99RtmzZ6Bo7u91O2rRpyZo1K717m8mbGT8ekifnxpgx3Ozdm/NeL7E2i6lZ+/77pYgIBQs+umlv+fLliIcwsZAQ7u7GIhHO+PqaYcQeHnDiBNfz5KGJpyfytitSrDJr1hAdAO/dizlXxYoVSZYsGffjSkM1akDfvub7qCXXHmNdzwYcTZ8szsWGS5WqgkgehgyBH6r2BBFmZ+7F1KmmXGPHmsNstiZkzNiMxo3NAJv+/b/AzS0NnTs7yJEjByJCqVIHyZAB+vbti9XqTWDgXbp3746XVwgBAa8QEBDAhg0bSJ26FGnSfAPA66/HVGJWqhRrisXnx/vvmzl7HiPkyxCWHFryHxQoYTQAKmdpAFTq/8Thw4fZ/mAie8DVq1c5cCCm9qJWrVqICOvW7SRLloKkSZOGJk16M3eu2e5wOPD19UVE6Nu3L4ULFyZjxozMnDkTgDJlWiKSgq5dz+FwmEEKHh73KVKkLoGBb+Pmlh9//9q4uCTHZnNH5EO8vBpgsVix2VqTLNlbNGgAIsWwWl149dXxiGQjU6ay1K5dGxEhe/bsTJs2jTJlylA6cm46gFdffRUR4cCBA/To0YNaDyxN1rhxY2qIsPWrr+DOHfD2Nk2qkb4Y72Da1yYshYWFYbPZoms542O323mrxVuk7Sbc9fenqAi/168fMzcLQI0aXB00CPd6IUjZXvz+u5mqxdf34XP16tWLqlWrxn6TM2fA1ZXoJTa2bIGAgEeWC7uds0HJ+bZ7lTg3N2zYHJEqTJoEi3qZxZCHVfqJzZtNv8wLF8x+WbOuJV269XToYMr7448nyZXra958E2rWrEnKlCkpWNBO6tSmqTdDhmP4+cGRI0dIm/ZD8uQZxZUrVwAICHgbb29zP8uXh3LllhMWFkbRojBmzKMvJ9FMmmQK+xjVZ1dn3LZx/0GBEkYDoHKWBkClnnNXr17l2LFjj92vW7duVKkSdxgYM2YMefPmBcyHuJ+fH+7u7nTsuAQXlyCqVKlCzpzvkjv3Ln744QeWLfsbi8VC0aJFcXNzp3//oYwZM57AwNKcOwcZMlTBYvEhRYrafPLJMXx9l5EmTTHc3XPj53eKypUHRTbzdsXXNwVWa1YKFhxK+vRZEElFsWLDmTQJRNpHTo+yBJFX8PRMRs+ePQkODkZE2LJlC7Nnz2bOnDkPXafNZiM8PJxLly5x4oF1yebNm8cei4X79erB8uXw0ktx1o5F+eyzz/j778dP8Pv7hd/xHuzNjbAwQkNDuX3gAGTPDmfPmh2aNYO+fQlo2gmp1ImzZ81bZ8ny8HmuX7/O2ahjHtSli6kyi3LiBFit8Ij5Ge8vXcJZXysrf4+7Vmry5Cm4uAxh4UKYP/c+n0g3+nS/i91ulsOLUreuybIffQRp08Jvv0Hx4qYCsk+fPtSoUYP06U2WBjN/obu7+T5rVnhwLEhQUA9stjYAFCx4HovFRvfu3cmb16zIEpeDB03+TTRbt0KaNI/dre2ytnRf3f0/KFDCaABUztIAqNRz7pNPPomeI+9R3n77bdKlSxf93G63c+jQIYDoaT1OnjzJjh078PX1pVKlSlSqNB4RN7p374OfX1kslvoUKlSY/Pl/xsXlJdq2HYmIUKHCQTp02IRIIJ9/Dp6eeXnrrYmIFEHEhdSpM9Cz58f4+d3BzQ22bDGDOazWzYSGmibmHj3mU6VKVUSEXr3WRC5zNgMRYfLk3YjUQUT44osvKFu2LCLCpUuXTIBbsiQ6yM2fP58CBQrEeQ/Cr13D4eICnp6mE1pUDZ2Ttp3eRrqR6R5+8cFg2aMHtGtHtub9kZqNuXvXBKjixRNw8vPnzQzUv/0W89rduyaVPSKc/tG4BjNL+WB3xNERM1KVKmYkdlST9OjRsfeJmmj6009NF8RNmyB3bjM24tq1a/z991k8PMxg2agxEyImm/r7w4MzCAUEjEWkOg4H+Pt/hpdXZry8vMiQ4Qwffhh3Gd9+O2Zew0Rx44a5oNy5IXNmqFYtzv80DNs4jHrf1YvjBIlDA6BylgZApZ5zbdq0IWPGjAAMGzaML774Is79SpcujYhE1zAtXrw4OhBGDfSYNGkSQ4cOpXr112nZsiVZspgauOHDF+LiEoxIcqxWKy4uQ/H1rYTISfLkeY906cDF5QwiQsmSdxBJzoIFuylZEipUuIfdbj4wP/zQTKYM4O+/iWzZHPTp0wcRYd++fdEjjs+du4LDAZ9/fjj6eZUq7RARli1bxnvvvUfKlCnNiQ4cMB/Qe/YAJthGNTnGsmWLqc0pWNAc8+OPT+NHwNo/15J1TNb4d/jkE6hXj8JtR+PyjqnJq1DBZInH6tkz7h1TpoQdO+I9bHfOFCz/oHYC3sCcRgTmzYu9LapP4JQpplJzzRoTBEXMNC43b8b0Z7x712RrEZObvL3N91EfIWnSLEIkhFu3wNW1ADlzTqVu3bq4u1ejQYPDlC5dmo/+MTS4cmVHdDh0OB5ZYfvszJ8PS5ea3xerFf76K9Yus/fO5uUpL8dxcOLQAKicpQFQqedctWrVsFqt3L17l3LlylG7tvnQnzNnzkP9+jJlyvTQaN6uXbsiIty6dYty5cqRLVs2ypQpg69vSpInX8THHw/Ay6sUIq706XMkssk2HcmSZcPFJSstWnRk2DAzKHXDBujd2467uzsi2yMHkFzm+HF4MIvduRNTaVW9OrzxBixZsgSLxcLt27eZMGECmTJleuj6du/eDWFhLIzs+7dnzx6GDh1KiRIlzA5ff21SxqBBZijp+PHw8stmVuR/Gj0aqlY1Q5R9fR8egeGExYcWU2BC3LWOgElRr73Ga11m4NbK9FesX5/Hr5lrt0NwsGmufkDvtb25lCXQTPQXhxk7p3HNXbi8ZW2c2//pzz/NLdy4Mfa2DRvMtu++g5AQ85Z+fua1ffvg+PGYAHj5sqkJFDGt3zEjnc25fHx2IOLHTz/tQcSLokXDOH/+PDZbJUSE0NBQvLy8OHfuHGB+h319y9Chg0l95cs/tcz+72XPDitXmiT6wLImm09uJujToEQs2MM0ACpnaQBU6jmzefNm/nqgBiJfvnyICIcOHcLf35/cuXMDJvAVLVo0skbMgZubG4UKFWJwZGerYsWKISIcPHiQ7NmzM3z4cESENGlqIwI9e05FxBs3t0BKl74bOSK2BSIto5ti/ylHjhxkyDAKq9XrsXMETp9u1u69efMmYyJHAFy+fJn169fH3rlTJxAhpwhXrlzh1KlTrFu3zmxr08YMiCheHEaNMp3rXnst7nT17rtmAuVbt+IOiP/SN3u+ofTU0vHvsGQJ5M9P3d5L8ehs+lr27p2Aps1Nm0xNX3h49Ev3Iu6RcnhKtuVOYUbX/MP8A/Mp0MUbu5trggPu1asmqB05EntbVJBbvdosLff992Y8ire3qRT79VdIlcrsExUko8KhiOkTuHSpyUsuLhcQEerXb4XF0pCoKRVtNgdlymzFbrdTo0aN6FVEihcvjohQubKZYihXLpP3E9Ubb5jfswULTBK+dg2AU9dPYeln4V7E0/lPhbM0AL4Y6onIBhG5LiJ2EbE+Zv8UIjJLRK6JyBURmSkiyePZVwOgUs/Q9evXHxpkcOfOHbZs2RJrv2vXoFs3CA8PJzAwkGoPNAn6+vri5ubG9OnTERFcXV25eNHMpRcYGMikSZNo0MB88H788cdkzlyb8eNvYrPZcHdPTs+eK/H2Tkbr1vsoWbIz3t5nKVMGatVaHXmO/Fit4O6egb59f0BkNiLCTz/9FKuclStXpnDhmqRNm+Pp3aQ9e8DTk8s5cjDK1TV2sCxc2AwhdXGB5MnN8l3btpkavvPnoXLlmP5zOXOaMPaUTdg+gSrfxD3ABjBNz0FBtB26CbeeT1BL9P770Lz5Qy8t+2MZqYanYnp+C7c/6hnrkNpza7Owbz0oUiTBb+NwmIrTuMaUOBzmtu7cadZajmoSLlbMTBXzww+me5ybG2zfbrZZLDH9CitWNNMW3r4NIg5EPHB1dUPkR7JlM5W2IiazA+zYsQMvLy+mTJmCp6cnvr49SJvWhOuXXoq7n+J/qmdP8zPp0CFm4eVVq4j4/ntc+rvw55U/E7mAhgbAF0MFMSGwqSQsAP4gIqtFxE9EUorIjyKyKJ59NQAq9ZRcuBD7A3bAgAHUrFkTMFOr1KtXD5vNxo0bN7h8+TLbtm0DYOHC24jcZNq070mTJgibzYsdO3Zw7do1RIRXX32V2rVrky5dOjw8PJg4cSLBwcF888035MqVG1/fXYj4sWDBKiyWzGTKtIaAgPRYLBVJlswM5Kha9SqlSpnO/sOHQ4oUZqm1woVDEYGGDc9z7pwDq/UMrq6ucY5WbdOmDalSpUrQoJQEcTjglVegRw8uzZpFmLf3wzMG374NNpupeipRwqSIqI5imTObKqPgYLOCxpdfmmSSgFG9T2rk5pHUnfeIRW4PHwZ3d+as2Y9bf6+EnfTWLVOzuXr1Qy83XNCQ7qu7M6liKo7VqxjrsKBPgzjZoh60avUkl/BIx4+bW1qxovndEDEDm7t2NTW5ZcuawR6rVpltfn4we7YZDdymjVmT2EwqDVZrNlKnDkYkguBg048wKlBGGTVqFCJCo0aNSJ78KjabL1u2bCFNmkQeEAIwcyaULGn+49GypRmgY7VCxYq89NlLrDu+LpELaGgAfLGUlccHwAwi4hCRvA+8FhL5WnAc+2sAVOopKVQIFi58+LUGDRqQK1cuwHzoZcyYkeDgYH744Qc++uij6ObcMmW6IRJE1qz5qVRpGC4unahZ80327NmDj48PXbt2xdvbmwoVKhASEkLhwq9SqVJ1zpw5g8Viwc/vW2y2vLRqdQmLxQuLJQfp0jUgc+YW1KjxJh4eng/VrG3cCCLmA+TNNxsgAp99ZradPEm8U6NENSM3a9bs6dy0GTNMG+KNGyY9BwebARUREaZWbdUqM6jD4YBDh2KmXQEzfDV5cjh1Cj74wATEZ1R91PfnvjRb9IhrjmxjPXvmMNJPYjcT3r378OiGW7dMmC1dOjrwrj+xnvLTy+M+0J2df+9kQetX2VX8pYdOc/LaSVJ/YCWiYAEzf91T9vrrJsxZLDBiBNSuDSNHmq+BgWYyZ6vV1NR9/rlpGh42DOrVMxnYzQ28vCpQrVovRMz2qGAY+c8AMP8ZGjx4ML//fgAXF3jppY7Ur18fb29TE37mzBlu3Ljx1K8vQXbsMJM4uriYwSC9epkkXLgwpaeWZvru6YlTrn/QAPhiSUgAfF1Ebsfx+l0RqR7H6xoAlXpKfH1N16EHmXn03IiIiKBcuXJMnjyZpk1b0rlzZ3Lnzo3FYuH69TBSp34ZkcokS5aaWrUuIHIYV1c3PvtsDhkz5mXChAmICO+805GKFd9GxEJAwEdcuwZeXoFkz96A4ODKuLhAkyZHyJatGSIreO+9QaRLl46sWR8ewXr7tunn5erqQ4cOHUmdOlZFVJzmzZuHRE4O7bQbN8w8Ig8OTd2wwdTmpUxpPoRF4h9Ke+OGGSH8H+i6qisdlneIfwfTAY67hw8i/YRzN849vL10adM3MUq/fqZK7IGQ03RRU+rMq8OWk6aLwK4xvdiVwe2h06xcMJKb7lYoV840fz9lb70FTZuCj4/pC1i4sMnWrVubOQ3Hjzd9A3PnNrkoY0YTCkuUMLkpdWrInfsU/fvfQsRUnkX1GwwOjnmfZctM98Zbt8y2okUP4+bmhsgZWraE8uXLU716dex2O8OHD0/QXI1Pza1bJgE/WOB16yBjRhouaMjA9QP/u7I8ggbAF0tCAmBDETkbx+vnRKRBHK9rAFTqCa1aZZrFwHyIrVpl+vCJmPl8wVRgORwOUqRIgYhw/Phx0qZNy5o1v+DrO49kyVLj7u6BSFo+++xHLBZ3/P3/oGtXB3nzgru7g1SpMhEYWB2RqoSGro3s/zcRT8/+iAgFCszH1xcsltdJliw5oaHNETGfVTt2mL7sM2d+g4hQpkyZWNdRsiSkS5eLQYMGcehQ3Ov6/tP27WYE8JQpU5y/kSNGmBD0zz5/58+bNBoebi7kjz+cfy8ntVrail5rej16J39/+PVXPAZ5cOjioZjXT540tUmenqYWE0yz9z/uYdYxWfnh8A/Rz6/8uJSTvkLY3bDo19a8VZRtZbM5fT3xadTIjN4OCIBjx8xKd6GhZpLofPlg4EAT8ooUMd3k8uaNWbTk559Nq3ypUtFjerBYYP9+833y5DHvU6eO+f2Mqh0sVgwqV66KSD/eeus+3t7eeHp6Rq/6Mua/XkYkY0ZTrRll/37w8aHXml68t/i9/7Ys8dAA+GJ5ZjWA7dq1o3PnznTu3JmVK1cm9u+1Us/U5cvmQ+px843dvQuzZsHRo0c5d+4SkTNX0Lq1WdsUzLQV7757nOXL/0TEfGbY7SYLbN5sBmqkS5eOWbNmISL06BGGn98lRCykS1cTi6Um2bPXRyQFnTrZqVjRdHl75x3InLkVIlbKlm1D4cJ/ISJMn76Rd9+dFzm69xi//gqdOg1EROjZsy/t2j3chW7jxo2RozLrx7q+8+fhjTdqMXv27ATfu0uXLiEirFq1KsHHxOnWLXOTli517jz/kQbzGzB049BH71S6NIwcScDIALae2hrz+pgxpsauQwczYMVMkmcSVqS/w/7G0s/C1TtXo19zHD1KuFXYfmpb9GvHAj1ZP7zdU7uuf2rZ0tTmZYvMmA0bmoA2ZowJaZ06mYqxMmVMc3GJEmYVj6g5BgsUMP823n7b1IiLmIHOpm9gTPdNf3+Tgc1k4CZITpw4G5H8vPLKbnx8fJg1axbp06enadOm1KtXj08/fWhVv2erfn346quY55FDpZfvX0Tgp4GER4THf+wztHLlyujP6nbt2mkAfIEktA+gXWL3AbSL9gFUL7ju3U2L286d5kPn6tVH779xI1gse7FYLIgIQUGfAvDyy/vIlu02AJkygZ/fqxQqVAkREyy/+GIOIrXp0mUL6dKlIzS0CsWL18HP7yWSJTOtnJ6epbFav6datUGIuOLiUoHVq00fKm9vM5DVYvkeEWHIkKHY7Xbq169PWFgYx44dI3v27Ngjq+xWrFiBiDA5jilDTp48iYjQrVu3OK8xIiLisdO5PMjhcBASEsLJkycTfEycxo0zkzUnyqy/T+71b19n7Laxj95pyRLw96fQZzlZfviBef1efdUMp714kQh3N356vwYR6YMeuva5++fGnmfQDKvlu5/GAxBx5DD3XIQ/jv36tC4rlg4dzPJuhQqZ50eOmMrL2bPNZTRqZMJh5com/IWGmv/wuLlB374mA7/5psm7WbKYf2dLlpgmZREzqXRU6MuZ0wzeFjH77t17GREX0qfvw2uRQ4btdjtr164lODiY0FDT3zBR3LsHIkScOU2GzzKw4MCCRCpIDK0BfDFYRcRdRCqKCXJekc8t8ey/VERWikgqEUktIqtEZGE8+2oAVC+EqKkodu6Mmb7icS2LM2eCSEtq136POnUWIRLE6dNnsVi8sVrbEh4OLi6/I+KG1WrD2/s8AQG78PDwRsSF3Ln7U7RoaWy297FavQkIqMbw4ebcq1bB0KGwaNFKRITg4N6cPm3KVby4qZ0TuYLFYn1sDV3UlDDL/zGZMJiAZ7PZGPXPzomJyeEwncimPx+d6ROi/PTyfL3r60fv5HBAoUJMrxbMvE2TTJ+/6tVNgjp1CoCfX8vCbZvwbSF3wiPCOXL5CE0XNaXed/V4f3nsZetuersxblILAC4O6cOaLBbu2+/H2u9p6dHDNNU+2GNg7lzz+1i1qrmckBAT8jJlglq1zD5ZspiBItWqmakYc+c2AVHEzOsXFQbPnjUVa76+pin5p5/M6wEBpnVc5BWsVh969+4dfUtv3ryJi4sL+fL9xT8WEQHg9u3b7N+//5ndk2g+PrBvH4PWD6LElBLU+64eIV+G0GB+g2f/3nHQAPhiaCxmFK898hH1fRkRSS8iN0Sk1AP7pxCRb8TMA3hVRGZI/L8gGgDV/7Uff4SjRy9w8uRtoia7nTcvZlWEs2dh4sSY/SMizNRst29Dr15XEPFi5MidvPlmBCIZyJ27ECLFEPFi4sTNiLRH5F0CA18hc+b+iGTkjTcGYbNVxGJJTf78zciXbwwiwgcffBCrfFFNqpUrL8bhMJ8xUdPCvf46tGrVmxMnTjz2Ops1axZvR/lMmTIxZ86cf3X/nqotW0wV6fz5Zh6R27cTu0QJVnRSUb7//fvH77hxI2fTeOGwWMy1jhtnElSkun1ygAjNa9n449IffLn9S7wGeyH9hHn7Y6/TdjFjWgb1esV8XywfQ+oGPLVrisvHH8c/7qZ2bdNvtFgx0zTs7W3CHpiuENmzm5bTNm3MGJ4qVUx3hpEjzWASd3dT+9e0qdnPajVzLdtsZooZUzM/BBGzHCCYPocffghFihTB339WdB/bB02bNo2QqBmnn6WMGWHdOs7eOEvqT1LTZlkbpu+ejrW/NVGahDUAKmdpAFT/10xzVjXatu2DiGnK+vJL8yE3f74ZwejqEdnDBwAAIABJREFUGtMcvHnzPUSOsW0blCw5DpGSDBsGefKAyGBEBBeX7SRLNjzqjy+enlsJDBwf+bwmTZrYefllM2rXzW0offuaJtqZM2fGWcZevYZz9Kjp6F+8uOlv9TStW7eOsLCwx+/4rLVqReSoFejcObFL80RyjcvFyiMJ6x/dfGEzRk1tGat5O8IegccgD84N6kXJETlZfGgxHZZ3oOOKjmw5uSXOmr0LJULo824Q/P03ES5WWk6o/lSuJz5DhhDdl/Wf3n0XcuQwcwK2aGH2a9PGbGva1AS6Vq3MNC4iULeu+Q9Nz56mv1/q1GZMT/bsJhOLmKlkAgNNODR9BfciYuHixYuAOcfbb0OnTp3w8GgT59SHH3zwAX5+qTh9+tndF8Ck2PnzH3rpvv0+tgG2RJkcWgOgcpYGQPV/zccH/PyCyZgxJ/I/9s47rKm7i+MHwgobFMU9ceKuWkcV6y5aV93aWlfdVi1a6woCDtx74xZRilr3QFHcigsXoqKioqIgIDPJ/b5/HG7CCIKSSO2bz/PwmOSuX+K9v3vuGd9DnIrl5cU3n1WrgLlzlSASsG0br9+mjReIqmHTJsDRsT8sLWX4+WfOcapR4z2qV98BJyf2hLi4vMO33z5H3boA0Tu4uAyGnV0cypUDpk2LApEBbGz8cf/+QxARrl27lut4w8MzKYN8Enff3MWNqBs5LhcEAUfCj0Ch1NAOQlfcusU/ukLB8i6HD3OcMUOru6+BUgtL4ezTs3lad83VNXDZ5AIAmHVmFjbf2AyloMTDdw9hPNMYcqUcP+36Cd5nvdFmaxusvrI6x3297/4jpreUQLl4Ee5VL4oZp2Zo4+vkyMKFfG0M0lDoOnQoSzK2bQuMHcvrubnxMpmM3//xB+cCErFRWLQob9emDYeMT5zgiHhEBFcYjx2L9OuHTw1jY0AiCVfZzvXr87ZnzgSDyArdur3CmDFjsGyZOh+zc+fOICKMG5ei098Gbdpo1F4su7gsTkWc0u2xNaA3APXkF70BqOc/C2uM8SRpZGQMoruYMYOlWogAd3fAyak7DAwaoV27Z0hJSYGJiSOIDPD77x9gYlILzZv/jWLF+Mb0118crmrXjqt0pVJuR9urlzqkXLMmv96zB+jTZyk8Pd9CoVBgwoQJSM1j39bPZeg/Q/H95u9zXH7y8UmQjLD7zm6djkPFokX8IxUqxDFDO7tMPW+/Jmzn2OLmq5t5WvfOmzuQekrxLukdTDxMUGx+MfQP6I999/fBeWV6n+DAKRi4dyBKLSyF00809EZORzH5T1wuQUipUQ1z+pSB322/HNfVBitX8vn7++/Zl/3+OxtvnTuzV0/skgZwnp/4ft48fj16NEdNu3VjyZeaNflZQCLhnNwSJYCOHTlUTMQV96VK8WsxO0CUnPnwASDqAmtr7ovdIENbkSpVqoCI8PPPETr9bdC7NyfuZsFlkws2Xd+k22NrQG8A6skvegNQz1fDnTvsOcgrLEB7AVKpA+rX7wwiD4wcyUYbEfDDD/tgbGyHChV+AZE9evb8GUSVIJU64Ntvg0FkgvnzH4CIk9p9fXm7UaOAKVP4tUymzpt6+pQT5YmA0FDtf/+MEiGacNnkAom7BNGJ0RqXt9/WHhWXVkTdNXU/qfL3k7h0iXvNAZwstmkTC8QRcQnpV4ggCDCaaYRHMY9yXxmAUlDCbo4dJh6biKrLq+JJ7BMYzzTG74d/R8/dHFvdenMraq2qBZIRXn/4iKBzbCz8G9lAYWqCsn+Z49arW9r4Sjki9gGeOjX7sr/+4mW9e3NuHpFa+Fws5li8WG1ETp7M3T9atOBtmjTh0HHZsrxNrVqcWvHrr7z+kiXs8SNifcCEBH5drhzSC6QeQiKxwvr162FoaIiYmBikpaXByMgIBgZG6NAhbx7az2bUKHZxZuGXPb9Adkqm22NrQG8A6skvegNQz1dD9+4sUyHi7e2NzRkqSRUKBV6/fo3Jk4GdO4ELFwCi9XB0dMGvv24BkRO6do1Dx45AqVJJMDcvjfLl18HXF6hYMQASSSnY2fmgXr02MDYeDSIpXr5UgIirHm/c4BvSokWs4UvEhazbtnH+k1wODB2kgDl9QGKidr/745jHMPUw/aixUHxBcVh4WcDnmk+2Zbde3YKZpxkexzxGobmFcPRhPnX8cmLcOM7zi45mV48oF7NmDf+AXyEJqQkgGeFd0rs8b+O63RVmnmaYeGwiADbOzTzN4B7kDgC4/PwySEawn2ufqzE+68wsOM0pAUN3Q6TIdRvm3LGDz2tNciui0ffrr2zjE6kjog8f8nsfH74miDjVom5d9vwNGsSevoYN2SAEuHDE3JwzAgwM+EGqdWsODYeFZRaQFl83asRe9GrVqsHf3x9hYWEwNTWFjU09NGuWvYhGq8yYwV8+C9NPTseve7N/rmv0BqCe/KI3APX8a8itTqFePQ6/itSsWROuGcoV3dzcULduXZQrxw/re/YARONRrtxIeHmlgqgNbG2/w7fffkClSrNhaVkXJUsqERzMISeZTMCiRcCIERNBVBjGxvUBcB7T5Mm8joEB65qJUjKnT3NlY7t2AF6+xJMyzXDR5Dut/zYzTs0AyQgnH5/UuFw0UsYfGY+OOzpmW959V3cMP8AZ+3PPzkWNlTV0U7mYrv1xq3tz1v74D/Ds/TOQjD4pd3J28GyQjFR5gz7XfDKF3+NS4kAyQpMNTXLdV5oiDXVW14HTUt11ABEJCODzesWK7MtEo2/ECHUhlahQlJrK18bu3dxCTvToNWnCod5Ro7jNnIWF2obq0YPX8/RkQ3DECA4VFykCXLnCGuF2drxOUBD/WztdKnHs2LEYNmwY9u3bB2dnZzg4dEbt2ot1++MsXcql+VnwueaDFpta6PbYGtAbgHryi94A1POvIDycHUcpH3Fw2NtzOAgAIiLew8DAAHZ2doiPV+LJkycwMzODoaEhiBLg6gqsXg0QtUWFCivw55+Ao2MiLC1bwtS0FkxMrFGyZCAkEg4VZ2THDl8QERwcBgJgSQyx+G/SJODNG27iQKR2cEEuB6pVQ1SN1kg1NNVKrptSUKLzzs44+OAgyi4uC6tZVlh+aTkEQcCT2MzSMNejrsNmtg3C3obBzNMMEbERqmUhL0Mg9ZTieRyXSaYqUlFtRTXMOzcPAIcju+/qnu/xIiUFMDHB1brFIDcktZ7NV87NVzdhM9sm9xUzcPn5ZZRcWFJlNManxMN+rj0evnuoWqfY/GIYvC9vv9GDtw++iPjwoUNqz3ZWxNDuhAlqL1/GRi4lS7Ls0pEjvGzDBhaKlkrZyzdokDr3FmCDj9K7jBQqxJXHvXtz5X5gIOcLtmzJ62zaxP+KHUoOHDiAMmXKwN3dHT/99BOKFh2BihUn6vbH2bGDLdosBD4ORPkl5XV7bA3oDUA9+UVvAOopEO7du4eoqCiV/Mru3TzBh4QA9+6xxy0jMTECiLqC6A6SkwEnp6Owty8FqVQKW9s7aN36Z/Tv3x/29iVAdAqVKr3E8OG3YGhYEmXKBGHYMBa3LVEiDVLpSDRo0AcSCR8zq9F57949EBHq1FmU4/iVSjYwVf1zN28GypeHkJwCwcpKK+HO/WH7YT3bGiYeJig0txDGHBqDEQdG4Ej4ERjPNMbT9+pKWr/bfqi/lj2Wg/cNRvtt7bE/bD+67OwCp6VOcDvmlmnfweEn0a+XKY6f2oDC3oVhPNMYiWmJiIyLxKXnlxCdGA3X7a5os7WNqsIx5GUImm9sjqrLq6qOnarIUNhy/jxQuDB+GuEAEOHDxuwVk18jQRFBKLu47Cdvl9XDmvV9qy2tsOhCzudYQSDm8mVROwGgNsKmTFFfr6dOqZffusXPPcHBvMzPj4s8xFxZsT/wli28/rRpauOuVCk29gYP5rDxnj1crDVqFIeEp0/nQqzixXnbP/9MQb16TWBkZIQpU6bA0dETxYr11e2Pc/Qo6+Bk4VHMIxjNNPqy1fXQG4B68o/eANRTIDRs2BCdOnWFhQV3ABBlJNau5ZCQoSGLNIts2nQBRARj4yk4fx4gmo5y5fqibt3mIJoEQ0NTPH78GE5O3VCu3BxIJF3FyRFFirxBz57AwIF8MzEy4tAtEctaZEWhUMDY2BIDBuSh8ejTp3y3qlCB72QAW5oZ+4jmQsDdALxPfp/t8+83fw/P057YGboTa6+uhc81H7hscsGfx/8EyUgV0gUAz9Oe6Ps33wBjkmJQZF4R2M6xxcygmVh2aRniUzLE1x8+BEqXRoqlFNccCR02tETJhSVx4tEJ9PLvBZIRLLws0NWvK6YGToXlLEukyFMwYO8A9NjdA+23tceYQ2NwOPwwpJ5SLDy/EEpBCSxYgKR2rWA8wxAHakpx4qJvnn+DfzN77u1BndV1tL7fqIQoJKX9u8Sw+dpiwfSsiALqnp7AwYP8+sqV7OuJrRYPHmSvHhEwd67a4DtzhtdbsoTfBwSwNmDt2pzj6+LCz1Ndu3LYuXhx1iAsXZrzAQH2Ni5cGAsXFxccOXIEjo4bYWurOQz7/LmWirKuXuWy5CykKlJhIDNAZFykFg6Sd/QGoJ78ojcA9XwxkpOT8f79e/z++0tIJBIYG5uAKAIbNnCBh1QKDBqUgDZtOJ9oxQoOO02aBLRqNQQmJmVgZlYdw4YBRC1RqNBKtGo1GUSGMDD4GZGRQJky81C+fCMQmaBWrctwdT0EExOW8BJFbonEVmvcjlYT16+HIi1NqXmhSEIClzRWrcraGPJ0Id9x4zi+lZHHj4GYGDyOeYzWi+qizwhHBB9bj/PPzoNkhJILS2bSErv64iqkntJMFb0XIy+iyLwiaLS+ESYemwgzTzM8ePsAAODp1Rbb5qg9IPej7yMqIYMFLSKXc57esGFAcjKiazkhfmA/9Avoh3FHxsHcyxzBT4Nx7OExKAUlBEFA6UWlcejBITjOd8TJxycR8jIE5l7mKLWwFMYeHouyi8uiy+oWSG7VAjfH9kKd1XUwYO8A/HXir4//fl8JPtd8Piqv819CNN7On8++bP9+XrZggbqw+/797OuJvX5Pn1ZX3C9bBnh7Z06b2L6d3584wcZfyZLc9ePHH3n9OnXYE+nszJHXRo344Q3gXMLh6ucfODgchZlZdu8cwMUrvXrl73cBwBIEhoYZ3P5qSiwogeCnwVo4SN7RG4B68oveAPw/4c2bNxg2bBjk8uzdBvLDihUr8DyPEvwjR45EjRq1YWCwCmXKNEa9et1BNAFDhgClSu2DpWUFEBFMTY9i6FCgRg1ODi9U6A1MTa3QrNkJGBqawMLiPCQSSxgY3ESlSgdgYGAAF5d7qFcPkEiCQUQwMWkJMzO+kRCx3MTOnWxYSiTcpMHGhnubfjLnz7NV2qcPt0XIekPYvp0lUAAsubgEYw6N4VYIU6dixqkZeFLcAonWUoSUNUP7be3xx9E/sPLySph7mWPbzW1IU6Sh7pq62QwosXBA4i5BRGwEJh6bCPu59thxawdCnKzwum6V3Me+eDEbrKLQ2oMHgIkJth9dAFMPU1RdXjVbVeqog6PQaH0jWM6yVIV822xtg+98voNSUOJDgB/kEgM8dDDCmEVtMPLgSKwPWY9mG5tlPTqS0pIwO3g2aq6qiVuvbuF53HOMOzJOd7I0WmDB+QXo5tetoIfxRbh7N2cZo8BAdYHIpUv8WtOl/+KFOp1j+HB+vX49p0wYG7MmOKDOFbx8mY07MzPWEezfn/+1sWGDtFkz7hX800+8PmsCZk7Hs7UNhaGhFQDgwAEgY/fESZP4+SzfxMfzgWNisi1qs7UN5p+br4WD5B29Aagnv+gNwK+Y6OhoREZqDjuEh4fD31/du3Tq1KkgIhw5krd2Vh9j7dq1CA4ORlpaGqRSKWbMmKFa9v79e0ydOhXOzs6IjVXr1qWkpMDOzg7m5rYgskWVKnPQpcslGBiYw95+PIgsMHbsOhDNgaGhEx49SgFRKhwcXEBEsLJqhokTBVSs2B5Epqhbtwfq1FGCKA2LFh1HZCSHlFatSoSRkREqVtypCmUZGLB38fhxTjYXw76VKkFja6lcGTQIqFKFd/DwYfbl9+9zb6u0NPQP6I9GS2ryna9VKzSfVQlKQwPIr1xCqpEBLGcY42U89/A9HH4YNrNtUH5JeVRbUU2j5EeJBSVQamEplcHkG+qLxtOKQ2FAUJoYI1f9mW7d2BWTkTZt8HbKeJCMVDIlGTn28BhIRuiys4vqs/fJ7zmsHBsLFCsGwccHQ/4ZApIRtt3chvvR92HqYZo59AxgZtBMVFleBb38e+Gbtd+g1ZZWIBllymf8tzE1cGqeizW+dlg7U7Pephge9vFhA5EIeJ89cwHv3/OysDC16PqOHfxclLEw/OpVtRfx++/59fz5wMiRwHffcdGXXM7GG5G6+0hYGP9rZaV+9jI3fwciQnx8PJo1Y2MTAB49eoRKlfqgfXst/DiCwGXJGuLeW25sQbUV1b7og4zeANQezbTwV/qLjzr/6A3Ar5DU1FSsX78e9vb2sLOzw9mzLDURGhqKHj16QKlUYsiQIXB0dIQgCIiPj4ednR0aN26Mfv36ZdvfsWPHUKNGjUyevD59+qB3796YO3cuWrZsiXPnzgEA0tLSUKhQIfTv3x+XL18GEaFcucqIiYlBjRqs0v/tt9+iUaNGGD9+PJ4+fYqjR49i9+7dqFChApo23QsigrX1XXzzDTBy5HkQVYax8XLI5YCFhRw2NrXRrVs3NGnyC2rUqIM2baJBJGDNGsDN7RCIJiAkRIGxY9lrkLWI4/z58+jZk/X7b