results.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
# Copyright (C) 2017 Universidad de Antofagasta
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
# Author: Médéric Boquien

"""These classes manage the results from the analysis. The main class
ResultsManager contains instances of BayesResultsManager and BestResultsManager
that contain the bayesian and best-fit estimates of the physical properties
along with the names of the parameters, which are proportional to the mass,
etc. Each of these classes contain a merge() method that allows to combine
results of the analysis with different blocks of models.
"""

from astropy.table import Table, Column
import numpy as np

17
from .utils import SharedArray
18
19
20
21
22
23
24
25
26
27
28
29
30


class BayesResultsManager(object):
    """This class contains the results of the bayesian estimates of the
    physical properties of the analysed objects. It is constructed from a
    ModelsManager instance, which provides the required information on the
    shape of the arrays. Because it can contain the partial results for only
    one block of models, we also store the sum of the model weights (that is
    the likelihood) so we can merge different instances to compute the combined
    estimates of the physical properties.

    """
    def __init__(self, models):
31
        nobs = len(models.obs)
32
        self.propertiesnames = models.propertiesnames
33
        extpropnames = models.massproportional.\
 Hector Salas's avatar
Hector Salas committed
34
            intersection(models.propertiesnames)
35
        intpropnames = set(models.propertiesnames) - extpropnames
36
37
38
39
40
41
42
        self.nproperties = len(models.propertiesnames)

        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
43
44
45
46
        self.intmean = {prop: SharedArray(nobs) for prop in intpropnames}
        self.interror = {prop: SharedArray(nobs) for prop in intpropnames}
        self.extmean = {prop: SharedArray(nobs) for prop in extpropnames}
        self.exterror = {prop: SharedArray(nobs) for prop in extpropnames}
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        self.weight = SharedArray(nobs)

    @property
    def mean(self):
        return self._mean

    @mean.setter
    def mean(self, mean):
        self._mean = mean

    @property
    def error(self):
        return self._error

    @error.setter
    def error(self, error):
        self._error = error

    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, weight):
        self._weight = weight
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BayesResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BayesResultsManager)
                    for result in results)):
            raise TypeError("A list of BayesResultsManager is required.")

        merged = results[0]
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        intmean = {prop: np.array([result.intmean[prop].data
                                   for result in results])
                   for prop in merged.intmean}
        interror = {prop: np.array([result.interror[prop].data
                                    for result in results])
                    for prop in merged.interror}
        extmean = {prop: np.array([result.extmean[prop].data
                                   for result in results])
                   for prop in merged.extmean}
        exterror = {prop: np.array([result.exterror[prop].data
                                    for result in results])
                    for prop in merged.exterror}
        weight = np.array([result.weight.data for result in results])

        totweight = np.sum(weight, axis=0)

        for prop in merged.intmean:
            merged.intmean[prop].data[:] = np.sum(
                intmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
            merged.interror[prop].data[:] = np.sqrt(np.sum(
                weight * (interror[prop]**2. + (intmean[prop]-merged.intmean[prop].data)**2), axis=0) / totweight)

        for prop in merged.extmean:
            merged.extmean[prop].data[:] = np.sum(
                extmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
            merged.exterror[prop].data[:] = np.sqrt(np.sum(
                weight * (exterror[prop]**2. + (extmean[prop]-merged.extmean[prop].data)**2), axis=0) / totweight)

        for prop in merged.extmean:
            if prop.endswith('_log'):
                merged.exterror[prop].data[:] = \
                    np.maximum(0.02, merged.exterror[prop].data)
134
            else:
135
136
137
                merged.exterror[prop].data[:] = \
                    np.maximum(0.05 * merged.extmean[prop].data,
                               merged.exterror[prop].data)
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
        return merged


class BestResultsManager(object):
    """This class contains the physical properties of the best fit of the
    analysed objects. It is constructed from a ModelsManager instance, which
    provides the required information on the shape of the arrays. Because it
    can contain the partial results for only one block of models, we also store
    the index so we can merge different instances to compute the best fit.

    """

    def __init__(self, models):
        self.obs = models.obs
153
        nobs = len(models.obs)
154
155
156
157
158
        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
159
160
161
162
163
164
165
166
167
168
        self.flux = {band: SharedArray(nobs) for band in models.obs.bands}
        allintpropnames = set(models.allpropertiesnames) - models.massproportional
        allextpropnames = set(models.allpropertiesnames) - allintpropnames
        self.intprop = {prop: SharedArray(nobs)
                        for prop in allintpropnames}
        self.extprop = {prop: SharedArray(nobs)
                        for prop in allextpropnames}
        self.chi2 = SharedArray(nobs)
        self.scaling = SharedArray(nobs)

169
        # We store the index as a float to work around python issue #10746
170
        self.index = SharedArray(nobs)
171
172

    @property
173
    def flux(self):
174
175
176
177
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
178
179
180
181
182
        return self._flux

    @flux.setter
    def flux(self, flux):
        self._flux = flux
183

184
    @property
185
    def intprop(self):
186
187
188
189
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
190
191
192
193
194
        return self._intprop

    @intprop.setter
    def intprop(self, intprop):
        self._intprop = intprop
195
196

    @property
197
    def extprop(self):
198
199
200
201
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
202
        return self._extprop
203

204
205
206
    @extprop.setter
    def extprop(self, extprop):
        self._extprop = extprop
207
208
209
210
211
212
213

    @property
    def chi2(self):
        """Returns a shared array containing the raw chi² of the best fit for
        each observation.

        """
214
        return self._chi2.data
215

216
217
218
219
    @chi2.setter
    def chi2(self, chi2):
        self._chi2 = chi2

220
221
222
223
224
225
    @property
    def index(self):
        """Returns a shared array containing the index of the best fit for each
        observation.

        """
226
        return self._index.data
227

228
229
230
231
    @index.setter
    def index(self, index):
        self._index = index

232
233
234
235
236
237
238
239
240
241
242
243
    @property
    def scaling(self):
        """Returns a shared array containing the scaling of the best fit for each
        observation.

        """
        return self._scaling.data

    @scaling.setter
    def scaling(self, scaling):
        self._scaling = scaling

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BestResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BestResultsManager)
                    for result in results)):
            raise TypeError("A list of BestResultsManager is required.")

        if len(results) == 1:
            return results[0]

263
        best = np.argmin([result.chi2 for result in results], axis=0)
264
265

        merged = results[0]
266
267
268
269
270
271
272
273
274
275
276
        for iobs, bestidx in enumerate(best):
            for band in merged.flux:
                merged.flux[band].data[iobs] = \
                    results[bestidx].flux[band].data[iobs]
            for prop in merged.intprop:
                merged.intprop[prop].data[iobs] = \
                    results[bestidx].intprop[prop].data[iobs]
            for prop in merged.extprop:
                merged.extprop[prop].data[iobs] = \
                    results[bestidx].extprop[prop].data[iobs]
            merged.chi2[iobs] = results[bestidx].chi2[iobs]
277
            merged.scaling[iobs] = results[bestidx].scaling[iobs]
278
            merged.index[iobs] = results[bestidx].index[iobs]
279
280
281
282
283
284
285
286

        return merged

    def analyse_chi2(self):
        """Function to analyse the best chi^2 and find out what fraction of
         objects seems to be overconstrainted.

        """
287
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        chi2_red = self.chi2 / (nobs - 1)
        # If low values of reduced chi^2, it means that the data are overfitted
        # Errors might be under-estimated or not enough valid data.
        print("\n{}% of the objects have chi^2_red~0 and {}% chi^2_red<0.5"
              .format(np.round((chi2_red < 1e-12).sum() / chi2_red.size, 1),
                      np.round((chi2_red < 0.5).sum() / chi2_red.size, 1)))


class ResultsManager(object):
    """This class contains the physical properties (best fit and bayesian) of
    the analysed objects. It is constructed from a ModelsManager instance,
    which provides the required information to initialise the instances of
    BestResultsManager and BayesResultsManager that store the results.

    """

    def __init__(self, models):
        self.conf = models.conf
        self.obs = models.obs
        self.params = models.params

        self.bayes = BayesResultsManager(models)
        self.best = BestResultsManager(models)

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of ResultsManager instances
            List of the partial results to be merged

        """
        merged = results[0]
        merged.bayes = BayesResultsManager.merge([result.bayes
                                                  for result in results])
        merged.best = BestResultsManager.merge([result.best
                                                for result in results])

        return merged

    def save(self, filename):
        """Save the estimated values derived from the analysis of the PDF and
        the parameters associated with the best fit. A simple text file and a
        FITS file are generated.

        Parameters
        ----------
        filename:

        """
        table = Table()

        table.add_column(Column(self.obs.table['id'], name="id"))

346
347
348
349
350
351
352
353
354
355
        for prop in sorted(self.bayes.intmean):
            table.add_column(Column(self.bayes.intmean[prop].data,
                                    name="bayes."+prop))
            table.add_column(Column(self.bayes.interror[prop].data,
                                    name="bayes."+prop+"_err"))
        for prop in sorted(self.bayes.extmean):
            table.add_column(Column(self.bayes.extmean[prop].data,
                                    name="bayes."+prop))
            table.add_column(Column(self.bayes.exterror[prop].data,
                                    name="bayes."+prop+"_err"))
356
357

        table.add_column(Column(self.best.chi2, name="best.chi_square"))
358
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
359
360
361
362
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        table.add_column(Column(self.best.chi2 / (nobs - 1),
                                name="best.reduced_chi_square"))

363
364
365
366
367
368
369
370
371
372
        for prop in sorted(self.best.intprop):
            table.add_column(Column(self.best.intprop[prop].data,
                                    name="best."+prop))
        for prop in sorted(self.best.extprop):
            table.add_column(Column(self.best.extprop[prop].data,
                                    name="best."+prop))

        for band in self.obs.bands:
            table.add_column(Column(self.best.flux[band].data,
                                    name="best."+band, unit='mJy'))
373
374
375
376
377


        table.write("out/{}.txt".format(filename), format='ascii.fixed_width',
                    delimiter=None)
        table.write("out/{}.fits".format(filename), format='fits')