__init__.py 27.7 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
23 24
                          Dale2014, DL2007, DL2014, NebularLines,
                          NebularContinuum)
Yannick Roehlly's avatar
Yannick Roehlly committed
25 26


27 28 29 30 31
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
32
    separated by a space (or a carriage return). There are the time vector, 5
33 34 35 36 37 38 39 40 41 42 43 44
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
45
              Vector of the time grid of the SSP in Myr.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
73
    what_line = next(file_structure)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
116
                what_line = next(file_structure)
117

Yannick Roehlly's avatar
Yannick Roehlly committed
118
    # The time grid is in year, we want Myr.
119
    time_grid = np.array(time_grid, dtype=float)
120
    time_grid *= 1.e-6
121 122 123 124

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
125
    wavelength *= 0.1
126 127 128 129

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
130
    luminosity *= 3.826e27
131 132 133 134 135 136 137 138
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


139
def build_filters(base):
140
    filters = []
141
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

        new_filter = Filter(filter_name, filter_description,
                            filter_type, filter_table)

        # We normalise the filter and compute the effective wavelength.
161 162 163 164 165 166 167 168
        # If the filter is a pseudo-filter used to compute line fluxes, it
        # should not be normalised.
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
            new_filter.effective_wavelength = np.mean(
                filter_table[0][filter_table[1] > 0]
            )
169
        filters.append(new_filter)
Yannick Roehlly's avatar
Yannick Roehlly committed
170

171
    base.add_filters(filters)
Yannick Roehlly's avatar
Yannick Roehlly committed
172

173 174 175

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
176

Yannick Roehlly's avatar
Yannick Roehlly committed
177 178
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
194
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
195 196
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
197
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
198 199 200 201 202
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
203 204 205 206
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
207

Yannick Roehlly's avatar
Yannick Roehlly committed
208 209 210 211
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
212 213 214 215 216 217 218 219 220 221 222 223 224 225

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
226
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
227 228 229 230
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
231
            age_grid_orig *= 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
232 233 234
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

235 236 237
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        lambda_grid_resamp = np.around(np.logspace(np.log10(10000),
                                                   np.log10(160000), 50))
        argmin = np.argmin(10000.-lambda_grid > 0)-1
        flux_age_resamp = 10.**interpolate.interp1d(
                                    np.log10(lambda_grid[argmin:]),
                                    np.log10(flux_age[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(lambda_grid_resamp))

        lambda_grid = np.hstack([lambda_grid[:argmin+1], lambda_grid_resamp])
        flux_age = np.vstack([flux_age[:argmin+1, :], flux_age_resamp])

253 254 255 256 257
        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
258

259 260
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
261 262


263 264
def build_bc2003(base):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03//')
265

266 267
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
        base_filename = bc03_dir + "bc2003_lr_" + key + "_" + imf + "_ssp"
        ssp_filename = base_filename + ".ised_ASCII"
        color3_filename = base_filename + ".3color"
        color4_filename = base_filename + ".4color"

        print("Importing %s..." % base_filename)

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
291 292 293 294 295 296 297
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
        color_table.append(color3_table[1])        # B4000
        color_table.append(color3_table[2])        # B4_VN
        color_table.append(color3_table[3])        # B4_SDSS
        color_table.append(color3_table[4])        # B(912)
298 299 300 301 302 303 304 305 306 307

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

        # Regrid the SSP data to the evenly spaced time grid.
        color_table = interpolate.interp1d(ssp_time, color_table)(time_grid)
        ssp_lumin = interpolate.interp1d(ssp_time,
                                         ssp_lumin)(time_grid)

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                np.log10(160000), 50))
        argmin = np.argmin(10000.-ssp_wave > 0)-1
        ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    np.log10(ssp_wave[argmin:]),
                                    np.log10(ssp_lumin[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(ssp_wave_resamp))

        ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
        ssp_lumin = np.vstack([ssp_lumin[:argmin+1, :], ssp_lumin_resamp])

323
        base.add_bc03(BC03(
324 325 326 327 328 329 330 331
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

332

333
def build_dale2014(base):
334
    models = []
335 336 337
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
338
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
339 340 341
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
342
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
343 344
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
345 346 347 348
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
349
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
350
    wave_stell = stell_emission_file[:, 0] * 0.1
351
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
352 353
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
354 355 356 357 358 359 360 361 362 363 364 365

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

366
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
367 368 369
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
370 371
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
372 373 374
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
375
        lumin /= norm
376

377
        models.append(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
378
    # Emission from dust heated by AGN - Quasar template
379
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
380 381
    print("Importing {}...".format(filename))

382 383 384 385
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
386
    lumin_quasar /= norm
387

388 389 390
    models.append(Dale2014(1.0, 0.0, wave, lumin_quasar))

    base.add_dale2014(models)
391

392

393
def build_dl2007(base):
394
    models = []
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

413
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
414 415
    MdMH = {"00": 0.0100, "10": 0.0100, "20": 0.0101, "30": 0.0102,
            "40": 0.0102, "50": 0.0103, "60": 0.0104}
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

431 432
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
433 434 435 436 437 438 439 440 441 442 443 444 445 446

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
447 448
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
449

450
            models.append(DL2007(qpah[model], umin, umin, wave, lumin))
451 452 453 454 455 456 457 458 459 460 461 462 463
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

464 465
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
466

467 468
                models.append(DL2007(qpah[model], umin, umax, wave, lumin))
    base.add_dl2007(models)
469 470


471
def build_dl2014(base):
472
    models = []
473 474
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

Médéric Boquien's avatar
Médéric Boquien committed
475 476 477
    qpah = {"000": 0.47, "010": 1.12, "020": 1.77, "030": 2.50, "040": 3.19,
            "050": 3.90, "060": 4.58, "070": 5.26, "080": 5.95, "090": 6.63,
            "100": 7.32}
478 479 480 481 482 483 484

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
485

486 487 488 489
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

490
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
491 492 493
    MdMH = {"000": 0.0100, "010": 0.0100, "020": 0.0101, "030": 0.0102,
            "040": 0.0102, "050": 0.0103, "060": 0.0104, "070": 0.0105,
            "080": 0.0106, "090": 0.0107, "100": 0.0108}
494

495 496 497 498 499 500 501 502 503 504 505 506 507
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

508 509
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
510 511 512 513 514 515 516 517 518 519 520 521

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

522 523
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
524

525
            models.append(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
526 527 528 529 530 531 532 533 534 535
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

536 537
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
538

539
                models.append(DL2014(qpah[model], umin, 1e7, al, wave, lumin))
540

541
    base.add_dl2014(models)
542

543
def build_fritz2006(base):
544
    models = []
545
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
546

547 548
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
549 550
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
551 552 553
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
554
    r_ratio = ["10", "30", "60", "100", "150"]
555 556

    # Read and convert the wavelength
557 558 559
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
560 561 562 563
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
Médéric Boquien's avatar
Médéric Boquien committed
564
    # Number of wavelengths: 178; Number of comments lines: 28
565 566 567
    nskip = 28
    blocksize = 178

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
601 602 603
            lumin_therm /= norm
            lumin_scatt /= norm
            lumin_agn /= norm
604

605
            models.append(Fritz2006(params[4], params[3], params[2],
606
                                         params[1], params[0], psy[n], wave,
Médéric Boquien's avatar
Médéric Boquien committed
607
                                         lumin_therm, lumin_scatt, lumin_agn))
608

609
    base.add_fritz2006(models)
610

611
def build_nebular(base):
612 613
    models_lines = []
    models_cont = []
614 615 616 617 618 619 620 621
    lines_dir = os.path.join(os.path.dirname(__file__), 'nebular/')

    # Number of Lyman continuum photon to normalize the nebular continuum
    # templates
    nlyc_continuum = {'0.0001': 2.68786E+53, '0.0004': 2.00964E+53,
                      '0.004': 1.79593E+53, '0.008': 1.58843E+53,
                      '0.02': 1.24713E+53, '0.05': 8.46718E+52}

622
    for Z in ['0.0001', '0.0004', '0.004', '0.008', '0.02', '0.05']:
623 624 625 626
        filename = "{}lines_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, ratio1, ratio2, ratio3 = np.genfromtxt(filename, unpack=True,
                                                     usecols=(0, 3, 7, 11))
627

628 629
        # Convert wavelength from Å to nm
        wave *= 0.1
630

631 632 633 634
        # Convert log(flux) into flux (arbitrary units)
        ratio1 = 10**(ratio1-38.)
        ratio2 = 10**(ratio2-38.)
        ratio3 = 10**(ratio3-38.)
635

636
        # Normalize all lines to Hβ
637
        w = np.where(wave == 486.1)
638 639 640 641
        ratio1 = ratio1/ratio1[w]
        ratio2 = ratio2/ratio2[w]
        ratio3 = ratio3/ratio3[w]

642 643 644
        models_lines.append(NebularLines(np.float(Z), -3., wave, ratio1))
        models_lines.append(NebularLines(np.float(Z), -2., wave, ratio2))
        models_lines.append(NebularLines(np.float(Z), -1., wave, ratio3))
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

        filename = "{}continuum_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, cont1, cont2, cont3 = np.genfromtxt(filename, unpack=True,
                                                  usecols=(0, 3, 7, 11))

        # Convert wavelength from Å to nm
        wave *= 0.1

        # Normalize flux from erg s¯¹ Hz¯¹ (Msun/yr)¯¹ to W nm¯¹ photon¯¹ s¯¹
        conv = 1e-7 * cst.c * 1e9 / (wave * wave) / nlyc_continuum[Z]
        cont1 *= conv
        cont2 *= conv
        cont3 *= conv

660 661 662
        models_cont.append(NebularContinuum(np.float(Z), -3., wave, cont1))
        models_cont.append(NebularContinuum(np.float(Z), -2., wave, cont2))
        models_cont.append(NebularContinuum(np.float(Z), -1., wave, cont3))
663

664 665
    base.add_nebular_continuum(models_cont)
    base.add_nebular_lines(models_lines)
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
def build_base():
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
    build_bc2003(base)
    print("\nDONE\n")
    print('#' * 78)

687
    print("4- Importing Draine and Li (2007) models\n")
688 689 690 691
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

692
    print("5- Importing the updated Draine and Li (2007 models)\n")
693 694 695 696
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

697
    print("6- Importing Fritz et al. (2006) models\n")
698
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
699 700 701
    print("\nDONE\n")
    print('#' * 78)

702
    print("7- Importing Dale et al (2014) templates\n")
703 704 705
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
Médéric Boquien's avatar
Médéric Boquien committed
706

707
    print("8- Importing nebular lines and continuum\n")
708
    build_nebular(base)
709 710
    print("\nDONE\n")
    print('#' * 78)
711

712 713
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
714 715 716

if __name__ == '__main__':
    build_base()