__init__.py 13.4 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2
3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Author: Yannick Roehlly
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7
8
This class represents a Spectral Energy Distribution (SED) as used by pcigale.
Such SED is characterised by:
Yannick Roehlly's avatar
Yannick Roehlly committed
9

Yannick Roehlly's avatar
Yannick Roehlly committed
10
11
- sfh: a tuple (time [Myr], Star Formation Rate [Msun/yr]) representing the
  Star Formation History of the galaxy.
Yannick Roehlly's avatar
Yannick Roehlly committed
12

Yannick Roehlly's avatar
Yannick Roehlly committed
13
14
- modules: a list of tuples (module name, parameter dictionary) containing all
  the pcigale modules the SED 'went through'.
Yannick Roehlly's avatar
Yannick Roehlly committed
15

Yannick Roehlly's avatar
Yannick Roehlly committed
16
- wavelength_grid: the grid of wavelengths [nm] used for the luminosities.
Yannick Roehlly's avatar
Yannick Roehlly committed
17

Yannick Roehlly's avatar
Yannick Roehlly committed
18
19
- contribution_names: the list of the names of the luminosity contributions
  making part of the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
20

Yannick Roehlly's avatar
Yannick Roehlly committed
21
22
23
24
- luminosities: a two axis numpy array containing all the luminosity density
  [W/nm] contributions to the SED. The index in the first axis corresponds to
  the contribution (in the contribution_names list) and the index of the
  second axis corresponds to the wavelength in the wavelength grid.
Yannick Roehlly's avatar
Yannick Roehlly committed
25

Yannick Roehlly's avatar
Yannick Roehlly committed
26
- info: a dictionary containing various information about the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
27

Yannick Roehlly's avatar
Yannick Roehlly committed
28
- mass_proportional_info: the list of keys in the info dictionary whose value
Yannick Roehlly's avatar
Yannick Roehlly committed
29
  is proportional to the galaxy mass.
Yannick Roehlly's avatar
Yannick Roehlly committed
30

Yannick Roehlly's avatar
Yannick Roehlly committed
31
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
32

Yannick Roehlly's avatar
Yannick Roehlly committed
33
import numpy as np
34
from collections import OrderedDict
Yannick Roehlly's avatar
Yannick Roehlly committed
35
from . import utils
36
from .io.vo import save_sed_to_vo
37
from scipy.constants import c, parsec
Yannick Roehlly's avatar
Yannick Roehlly committed
38
from scipy.interpolate import interp1d
Yannick Roehlly's avatar
Yannick Roehlly committed
39

40
41
42
43
44
# Time lapse used to compute the average star formation rate. We use a
# constant to keep it easily changeable for advanced user while limiting the
# number of parameters. The value is in Myr.
AV_LAPSE = 100

45

Yannick Roehlly's avatar
Yannick Roehlly committed
46
47
class SED(object):
    """Spectral Energy Distribution with associated information
Yannick Roehlly's avatar
Yannick Roehlly committed
48
49
    """

Yannick Roehlly's avatar
Yannick Roehlly committed
50
51
52
53
54
55
56
57
58
59
60
61
    def __init__(self, sfh=None):
        """Create a new SED

        Parameters
        ----------
        sfh : (numpy.array, numpy.array)
            Star Formation History: tuple of two numpy array, the first is the
            time in Myr and the second is the Star Formation Rate in Msun/yr.
            If no SFH is given, it's set to None.

        """
        self.sfh = sfh
Yannick Roehlly's avatar
Yannick Roehlly committed
62
63
64
        self.modules = []
        self.wavelength_grid = None
        self.contribution_names = []
Yannick Roehlly's avatar
Yannick Roehlly committed
65
        self.luminosities = None
66
        self.info = OrderedDict()
67
        self.mass_proportional_info = []
Yannick Roehlly's avatar
Yannick Roehlly committed
68

Yannick Roehlly's avatar
Yannick Roehlly committed
69
70
71
72
73
74
75
76
77
78
79
80
81
    @property
    def sfh(self):
        """Return a copy of the star formation history
        """
        if self._sfh is None:
            return None
        else:
            return np.copy(self._sfh)

    @sfh.setter
    def sfh(self, value):
        self._sfh = value

82
83
84
85
86
87
88
        if value:
            sfh_time, sfh_sfr = value
            sfh_age = np.max(sfh_time) - sfh_time
            self._sfh = value
            self.add_info("sfr", sfh_sfr[-1], True, True)
            self.add_info("average_sfr", np.mean(sfh_sfr[sfh_age <= AV_LAPSE]),
                          True, True)
89
            self.add_info("age", np.max(sfh_time), False, True)
90

Yannick Roehlly's avatar
Yannick Roehlly committed
91
92
    @property
    def wavelength_grid(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
93
        """ Return a copy of the wavelength grid
Yannick Roehlly's avatar
Yannick Roehlly committed
94
95
96
97
98
99
100
101
102
103
104
        """
        if self._wavelength_grid is None:
            return None
        else:
            return np.copy(self._wavelength_grid)

    @wavelength_grid.setter
    def wavelength_grid(self, value):
        self._wavelength_grid = value

    @property
Yannick Roehlly's avatar
Yannick Roehlly committed
105
106
    def luminosities(self):
        """ Return a copy of the luminosity contributions
Yannick Roehlly's avatar
Yannick Roehlly committed
107
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
108
        if self._luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
109
110
            return None
        else:
Yannick Roehlly's avatar
Yannick Roehlly committed
111
            return np.copy(self._luminosities)
Yannick Roehlly's avatar
Yannick Roehlly committed
112

Yannick Roehlly's avatar
Yannick Roehlly committed
113
114
115
    @luminosities.setter
    def luminosities(self, value):
        self._luminosities = value
Yannick Roehlly's avatar
Yannick Roehlly committed
116
117
118

    @property
    def luminosity(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
119
120
        """Total luminosity of the SED

Yannick Roehlly's avatar
Yannick Roehlly committed
121
122
123
        Return the total luminosity density vector, i.e. the sum of all the
        contributions in W/nm.
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
124
125
126
127
        if self._luminosities is None:
            return None
        else:
            return self._luminosities.sum(0)
Yannick Roehlly's avatar
Yannick Roehlly committed
128

129
130
131
    @property
    def fnu(self):
        """Total Fν flux density of the SED
Yannick Roehlly's avatar
Yannick Roehlly committed
132

133
134
        Return the total Fν density vector, i.e the total luminosity converted
        to Fν flux in mJy.
Yannick Roehlly's avatar
Yannick Roehlly committed
135
136
        """

Yannick Roehlly's avatar
Yannick Roehlly committed
137
        # Fλ flux density in W/m²/nm
138
139
        f_lambda = utils.luminosity_to_flux(self.luminosity,
                                            self.info['universe.luminosity_distance'])
Yannick Roehlly's avatar
Yannick Roehlly committed
140

141
142
        # Fν flux density in mJy
        f_nu = utils.lambda_flambda_to_fnu(self.wavelength_grid, f_lambda)
Yannick Roehlly's avatar
Yannick Roehlly committed
143

144
        return f_nu
Yannick Roehlly's avatar
Yannick Roehlly committed
145

146
    def add_info(self, key, value, mass_proportional=False, force=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
147
148
149
        """
        Add a key / value to the information dictionary

Yannick Roehlly's avatar
Yannick Roehlly committed
150
        If the key is present in the dictionary, it will raise an exception.
Yannick Roehlly's avatar
Yannick Roehlly committed
151
        Use this method (instead of direct value assignment ) to avoid
152
        overriding an already present information.
Yannick Roehlly's avatar
Yannick Roehlly committed
153

Yannick Roehlly's avatar
Yannick Roehlly committed
154
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
155
156
157
158
159
        ----------
        key : any immutable
           The key used to retrieve the information.
        value : anything
           The information.
160
161
162
        mass_proportional : boolean
           If True, the added variable is set as proportional to the
           mass.
163
        force : boolean
164
           If false (default), adding a key that already exists in the info
165
166
           dictionary will raise an error. If true, doing this will update
           the associated value.
Yannick Roehlly's avatar
Yannick Roehlly committed
167
168

        """
169
        if (key not in self.info) or force:
Yannick Roehlly's avatar
Yannick Roehlly committed
170
            self.info[key] = value
171
172
            if mass_proportional:
                self.mass_proportional_info.append(key)
Yannick Roehlly's avatar
Yannick Roehlly committed
173
        else:
174
            raise KeyError("The information %s is already present "
Yannick Roehlly's avatar
Yannick Roehlly committed
175
176
                           "in the SED. " % key)

177
178
179
    def add_module(self, module_name, module_conf):
        """Add a new module information to the SED.

Yannick Roehlly's avatar
Yannick Roehlly committed
180
        Parameters
181
182
183
184
185
        ----------
        module_name : string
            Name of the module. This name can be suffixed with anything
            using a dot.
        module_conf : dictionary
Yannick Roehlly's avatar
Yannick Roehlly committed
186
            Dictionary containing the module parameters.
187

Yannick Roehlly's avatar
Yannick Roehlly committed
188
        TODO: Complete the parameter dictionary with the default values from
189
190
              the module if they are not present.

Yannick Roehlly's avatar
Yannick Roehlly committed
191
        """
192
        self.modules.append((module_name, module_conf))
Yannick Roehlly's avatar
Yannick Roehlly committed
193

194
195
196
197
    def add_contribution(self, contribution_name, results_wavelengths,
                         results_lumin):
        """
        Add a new luminosity contribution to the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
198
199
200
201
202
203
204
205

        The luminosity contribution of the module is added to the contribution
        table doing an interpolation between the current wavelength grid and
        the grid of the module contribution. During the interpolation,
        everything that is outside of the concerned wavelength domain has its
        luminosity set to 0. Also, the name of the contribution is added to
        the contribution names array.

Yannick Roehlly's avatar
Yannick Roehlly committed
206
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        ----------
        contribution_name : string
            Name of the contribution added. This name is used to retrieve the
            luminosity contribution and allows one module to add more than
            one contribution.

        results_wavelengths : array of floats
            The vector of the wavelengths of the module results (in nm).

        results_lumin : array of floats
            The vector of the Lλ luminosities (in W/nm) of the module results.

        """
        self.contribution_names.append(contribution_name)

        # If the SED luminosity table is empty, then there is nothing to
        # compute.
Yannick Roehlly's avatar
Yannick Roehlly committed
224
        if self.luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
225
            self.wavelength_grid = np.copy(results_wavelengths)
Yannick Roehlly's avatar
Yannick Roehlly committed
226
            self.luminosities = np.copy(results_lumin)
Yannick Roehlly's avatar
Yannick Roehlly committed
227
        else:
228
229
            # If the added luminosity contribution changes the SED wavelength
            # grid, we interpolate everything on a common wavelength grid.
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            if (results_wavelengths.size != self.wavelength_grid.size or
                    not np.all(results_wavelengths == self.wavelength_grid)):
                # Compute the new wavelength grid for the spectrum.
                new_wavelength_grid = utils.best_grid(results_wavelengths,
                                                      self.wavelength_grid)

                # Interpolate each luminosity component to the new wavelength
                # grid setting everything outside the wavelength domain to 0.
                new_luminosities = interp1d(self.wavelength_grid,
                                            self.luminosities,
                                            bounds_error=False,
                                            fill_value=0.)(new_wavelength_grid)

                # Interpolate the added luminosity array to the new wavelength
                # grid
                interp_lumin = interp1d(results_wavelengths,
                                        results_lumin,
Yannick Roehlly's avatar
Yannick Roehlly committed
247
                                        bounds_error=False,
248
                                        fill_value=0)(new_wavelength_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
249

250
251
252
253
254
                self.wavelength_grid = new_wavelength_grid
                self.luminosities = np.vstack((new_luminosities, interp_lumin))
            else:
                self.luminosities = np.vstack((self.luminosities,
                                               results_lumin))
Yannick Roehlly's avatar
Yannick Roehlly committed
255
256
257
258
259
260
261

    def get_lumin_contribution(self, name):
        """Get the luminosity vector of a given contribution

        If the name of the contribution is not unique in the SED, the flux of
        the last one is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
262
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        ----------
        name : string
            Name of the contribution

        Returns
        -------
        luminosities : array of floats
            Vector of the luminosity density contribution based on the SED
            wavelength grid.

        """
        # Find the index of the _last_ name element
        idx = (len(self.contribution_names) - 1
               - self.contribution_names[::-1].index(name))
Yannick Roehlly's avatar
Yannick Roehlly committed
277
        return self.luminosities[idx]
Yannick Roehlly's avatar
Yannick Roehlly committed
278

279
    def compute_fnu(self, transmission, lambda_eff):
Yannick Roehlly's avatar
Yannick Roehlly committed
280
281
282
283
284
285
286
287
288
289
290
291
        """
        Compute the Fν flux density corresponding the filter which
        transmission is given.

        As the SED stores the Lλ luminosity density, we first compute the Fλ
        flux density. Fλ is the integration of the Lλ luminosity multiplied by
        the filter transmission, normalised to this transmission and corrected
        by the luminosity distance of the source. This is done by the
        pcigale.sed.utils.luminosity_to_flux function.

        Fλ = luminosity_to_flux( integ( LλT(λ)dλ ) / integ( T(λ)dλ ) )

Yannick Roehlly's avatar
Yannick Roehlly committed
292
        Fλ is in W/m²/nm. At redshift 0, the flux is computed at 10 pc. Then,
Yannick Roehlly's avatar
Yannick Roehlly committed
293
294
295
296
297
298
299
300
301
        to compute Fν, we make the approximation:

        Fν = λeff / c . λeff . Fλ

        Fν is computed in W/m²/Hz and then converted to mJy.

        If the SED spectrum does not cover all the filter response table,
        -99 is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
302
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        ----------
        transmission : 2D array of floats
            A numpy 2D array containing the filter response profile
            wavelength[nm] vs transmission).

        lambda_eff : float
            Effective wavelength of the filter in nm.

        Return
        ------
        fnu : float
            The integrated Fν density in mJy.
        """

317
        # Filter limits
318
319
        lambda_min = np.min(transmission[0])
        lambda_max = np.max(transmission[0])
Yannick Roehlly's avatar
Yannick Roehlly committed
320

321
322
323
324
        wavelength = self.wavelength_grid
        l_lambda = self.luminosity

        # Test if the spectrum cover all the filter extend
325
326
        if ((np.min(self.wavelength_grid) > lambda_min) or
                (np.max(self.wavelength_grid) < lambda_max)):
Yannick Roehlly's avatar
Yannick Roehlly committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
            f_nu = -99.

        else:
            # We regrid both spectrum and filter to the best wavelength grid
            # to avoid interpolating a high wavelength density curve to a low
            # density one. Also, we limit the work wavelength domain to the
            # filter one, taking care the presence of λmin and λman in the
            # used wavelength grid.
            wavelength_r = utils.best_grid(wavelength, transmission[0])
            if lambda_min not in wavelength_r:
                wavelength_r.append(lambda_min)
            if lambda_max not in wavelength_r:
                wavelength_r.append(lambda_max)
            wavelength_r.sort()
            wavelength_r = wavelength_r[wavelength_r <= lambda_max]
            wavelength_r = wavelength_r[wavelength_r >= lambda_min]

            l_lambda_r = np.interp(wavelength_r, wavelength, l_lambda)
            transmission_r = np.interp(wavelength_r, transmission[0],
                                       transmission[1])

348
349
            if 'universe.luminosity_distance' in self.info.keys():
                dist = self.info['universe.luminosity_distance']
350
            else:
351
                dist = 10. * parsec
352

Yannick Roehlly's avatar
Yannick Roehlly committed
353
            # TODO: Can we avoid to normalise as the filter transmission is
354
            # already normalised?
Yannick Roehlly's avatar
Yannick Roehlly committed
355
356
357
            f_lambda = utils.luminosity_to_flux(
                (np.trapz(transmission_r * l_lambda_r, wavelength_r) /
                 np.trapz(transmission_r, wavelength_r)),
358
                dist
Yannick Roehlly's avatar
Yannick Roehlly committed
359
360
361
362
363
364
365
366
367
            )

            # Fν in W/m²/Hz. The 1.e-9 factor is because λ is in nm.
            f_nu = lambda_eff * f_lambda * lambda_eff * 1.e-9 / c

            # Conversion from W/m²/Hz to mJy
            f_nu *= 1.e+29

        return f_nu
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

    def to_votable(self, filename, mass=1.):
        """
        Save the SED to a VO-table file

        Parameters
        ----------
        filename : string
            Name of the VO-table file
        mass : float
            Galaxy mass in solar mass. When need, the saved data will be
            multiplied by this mass.

        """
        save_sed_to_vo(self, filename, mass)