__init__.py 29.1 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from astropy.table import Table
23
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
24
                          Dale2014, DL2007, DL2014, NebularLines,
25
                          NebularContinuum, Schreiber2016)
Yannick Roehlly's avatar
Yannick Roehlly committed
26 27


28 29 30 31 32
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
33
    separated by a space (or a carriage return). There are the time vector, 5
34 35 36 37 38 39 40 41 42 43 44 45
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
46
              Vector of the time grid of the SSP in Myr.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
74
    what_line = next(file_structure)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
117
                what_line = next(file_structure)
118

Yannick Roehlly's avatar
Yannick Roehlly committed
119
    # The time grid is in year, we want Myr.
120
    time_grid = np.array(time_grid, dtype=float)
121
    time_grid *= 1.e-6
122 123 124 125

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
126
    wavelength *= 0.1
127 128 129 130

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
131
    luminosity *= 3.826e27
132 133 134 135 136 137 138 139
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


140
def build_filters(base):
141
    filters = []
142
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

        new_filter = Filter(filter_name, filter_description,
                            filter_type, filter_table)

        # We normalise the filter and compute the effective wavelength.
162 163 164 165 166 167 168 169
        # If the filter is a pseudo-filter used to compute line fluxes, it
        # should not be normalised.
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
            new_filter.effective_wavelength = np.mean(
                filter_table[0][filter_table[1] > 0]
            )
170
        filters.append(new_filter)
Yannick Roehlly's avatar
Yannick Roehlly committed
171

172
    base.add_filters(filters)
Yannick Roehlly's avatar
Yannick Roehlly committed
173

174 175 176

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
177

Yannick Roehlly's avatar
Yannick Roehlly committed
178 179
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
195
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
196 197
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
198
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
199 200 201 202 203
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
204 205 206 207
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
208

Yannick Roehlly's avatar
Yannick Roehlly committed
209 210 211 212
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
227
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
228 229 230 231
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
232
            age_grid_orig *= 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
233 234 235
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

236 237 238
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        lambda_grid_resamp = np.around(np.logspace(np.log10(10000),
                                                   np.log10(160000), 50))
        argmin = np.argmin(10000.-lambda_grid > 0)-1
        flux_age_resamp = 10.**interpolate.interp1d(
                                    np.log10(lambda_grid[argmin:]),
                                    np.log10(flux_age[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(lambda_grid_resamp))

        lambda_grid = np.hstack([lambda_grid[:argmin+1], lambda_grid_resamp])
        flux_age = np.vstack([flux_age[:argmin+1, :], flux_age_resamp])

254 255 256 257 258
        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
259

260 261
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
262 263


264 265
def build_bc2003(base):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03//')
266

267 268
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
        base_filename = bc03_dir + "bc2003_lr_" + key + "_" + imf + "_ssp"
        ssp_filename = base_filename + ".ised_ASCII"
        color3_filename = base_filename + ".3color"
        color4_filename = base_filename + ".4color"

        print("Importing %s..." % base_filename)

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
292 293 294 295 296 297 298
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
        color_table.append(color3_table[1])        # B4000
        color_table.append(color3_table[2])        # B4_VN
        color_table.append(color3_table[3])        # B4_SDSS
        color_table.append(color3_table[4])        # B(912)
299 300 301 302 303 304 305 306 307 308

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

        # Regrid the SSP data to the evenly spaced time grid.
        color_table = interpolate.interp1d(ssp_time, color_table)(time_grid)
        ssp_lumin = interpolate.interp1d(ssp_time,
                                         ssp_lumin)(time_grid)

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                np.log10(160000), 50))
        argmin = np.argmin(10000.-ssp_wave > 0)-1
        ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    np.log10(ssp_wave[argmin:]),
                                    np.log10(ssp_lumin[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(ssp_wave_resamp))

        ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
        ssp_lumin = np.vstack([ssp_lumin[:argmin+1, :], ssp_lumin_resamp])

324
        base.add_bc03(BC03(
325 326 327 328 329 330 331 332
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

333

334
def build_dale2014(base):
335
    models = []
336 337 338
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
339
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
340 341 342
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
343
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
344 345
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
346 347 348 349
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
350
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
351
    wave_stell = stell_emission_file[:, 0] * 0.1
352
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
353 354
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
355 356 357 358 359 360 361 362 363 364 365 366

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

367
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
368 369 370
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
371 372
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
373 374 375
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
376
        lumin /= norm
377

378
        models.append(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
379
    # Emission from dust heated by AGN - Quasar template
380
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
381 382
    print("Importing {}...".format(filename))

383 384 385 386
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
387
    lumin_quasar /= norm
388

389 390 391
    models.append(Dale2014(1.0, 0.0, wave, lumin_quasar))

    base.add_dale2014(models)
392

393

394
def build_dl2007(base):
395
    models = []
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

414
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
415 416
    MdMH = {"00": 0.0100, "10": 0.0100, "20": 0.0101, "30": 0.0102,
            "40": 0.0102, "50": 0.0103, "60": 0.0104}
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

432 433
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
434 435 436 437 438 439 440 441 442 443 444 445 446 447

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
448 449
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
450

451
            models.append(DL2007(qpah[model], umin, umin, wave, lumin))
452 453 454 455 456 457 458 459 460 461 462 463 464
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

465 466
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
467

468 469
                models.append(DL2007(qpah[model], umin, umax, wave, lumin))
    base.add_dl2007(models)
470 471


472
def build_dl2014(base):
473
    models = []
474 475
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

Médéric Boquien's avatar
Médéric Boquien committed
476 477 478
    qpah = {"000": 0.47, "010": 1.12, "020": 1.77, "030": 2.50, "040": 3.19,
            "050": 3.90, "060": 4.58, "070": 5.26, "080": 5.95, "090": 6.63,
            "100": 7.32}
479 480 481 482 483 484 485

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
486

487 488 489 490
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

491
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
492 493 494
    MdMH = {"000": 0.0100, "010": 0.0100, "020": 0.0101, "030": 0.0102,
            "040": 0.0102, "050": 0.0103, "060": 0.0104, "070": 0.0105,
            "080": 0.0106, "090": 0.0107, "100": 0.0108}
495

496 497 498 499 500 501 502 503 504 505 506 507 508
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

509 510
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
511 512 513 514 515 516 517 518 519 520 521 522

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

523 524
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
525

526
            models.append(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
527 528 529 530 531 532 533 534 535 536
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

537 538
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
539

540
                models.append(DL2014(qpah[model], umin, 1e7, al, wave, lumin))
541

542
    base.add_dl2014(models)
543

544
def build_fritz2006(base):
545
    models = []
546
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
547

548 549
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
550 551
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
552 553 554
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
555
    r_ratio = ["10", "30", "60", "100", "150"]
556 557

    # Read and convert the wavelength
558 559 560
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
561 562 563 564
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
Médéric Boquien's avatar
Médéric Boquien committed
565
    # Number of wavelengths: 178; Number of comments lines: 28
566 567 568
    nskip = 28
    blocksize = 178

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
602 603 604
            lumin_therm /= norm
            lumin_scatt /= norm
            lumin_agn /= norm
605

606
            models.append(Fritz2006(params[4], params[3], params[2],
607
                                         params[1], params[0], psy[n], wave,
Médéric Boquien's avatar
Médéric Boquien committed
608
                                         lumin_therm, lumin_scatt, lumin_agn))
609

610
    base.add_fritz2006(models)
611

612
def build_nebular(base):
613 614
    models_lines = []
    models_cont = []
615 616 617 618 619 620 621 622
    lines_dir = os.path.join(os.path.dirname(__file__), 'nebular/')

    # Number of Lyman continuum photon to normalize the nebular continuum
    # templates
    nlyc_continuum = {'0.0001': 2.68786E+53, '0.0004': 2.00964E+53,
                      '0.004': 1.79593E+53, '0.008': 1.58843E+53,
                      '0.02': 1.24713E+53, '0.05': 8.46718E+52}

623
    for Z in ['0.0001', '0.0004', '0.004', '0.008', '0.02', '0.05']:
624 625 626 627
        filename = "{}lines_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, ratio1, ratio2, ratio3 = np.genfromtxt(filename, unpack=True,
                                                     usecols=(0, 3, 7, 11))
628

629 630
        # Convert wavelength from Å to nm
        wave *= 0.1
631

632 633 634 635
        # Convert log(flux) into flux (arbitrary units)
        ratio1 = 10**(ratio1-38.)
        ratio2 = 10**(ratio2-38.)
        ratio3 = 10**(ratio3-38.)
636

637
        # Normalize all lines to Hβ
638
        w = np.where(wave == 486.1)
639 640 641 642
        ratio1 = ratio1/ratio1[w]
        ratio2 = ratio2/ratio2[w]
        ratio3 = ratio3/ratio3[w]

643 644 645
        models_lines.append(NebularLines(np.float(Z), -3., wave, ratio1))
        models_lines.append(NebularLines(np.float(Z), -2., wave, ratio2))
        models_lines.append(NebularLines(np.float(Z), -1., wave, ratio3))
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

        filename = "{}continuum_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, cont1, cont2, cont3 = np.genfromtxt(filename, unpack=True,
                                                  usecols=(0, 3, 7, 11))

        # Convert wavelength from Å to nm
        wave *= 0.1

        # Normalize flux from erg s¯¹ Hz¯¹ (Msun/yr)¯¹ to W nm¯¹ photon¯¹ s¯¹
        conv = 1e-7 * cst.c * 1e9 / (wave * wave) / nlyc_continuum[Z]
        cont1 *= conv
        cont2 *= conv
        cont3 *= conv

661 662 663
        models_cont.append(NebularContinuum(np.float(Z), -3., wave, cont1))
        models_cont.append(NebularContinuum(np.float(Z), -2., wave, cont2))
        models_cont.append(NebularContinuum(np.float(Z), -1., wave, cont3))
664

665 666
    base.add_nebular_continuum(models_cont)
    base.add_nebular_lines(models_lines)
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
def build_schreiber2016(base):
    models = []
    schreiber2016_dir = os.path.join(os.path.dirname(__file__), 'schreiber2016/')
    pah = Table.read(schreiber2016_dir + 'g15_pah.fits')
    dust = Table.read(schreiber2016_dir + 'g15_dust.fits')
    
    # Getting the lambda grid for the templates and convert from microns to nm.
    wave = dust[0][0][0] * 1E3

    for td in range(15, 100, 1):
        # Find the closest temperature in the model list of tdust
        tsed = np.where(np.absolute(np.array(dust[0][6])-td) == np.min(np.absolute(np.array(dust[0][6])-td)))[0]
        
        # The models are in nuFnu.
        # We convert this to W/nm.
        lumin_dust = dust[0][1][tsed] / wave
        lumin_dust = lumin_dust[0]
        #norm = np.trapz(lumin_dust, x=wave)
        #lumin_dust /= norm

        models.append(Schreiber2016(0, np.float(td), wave, lumin_dust))

        # The models are in nuFnu.
        # We convert this to W/nm.
        lumin_pah = pah[0][1][tsed] / wave
        lumin_pah = lumin_pah[0]
        #norm = np.trapz(lumin_pah, x=wave)
        #lumin_pah /= norm

        models.append(Schreiber2016(1, np.float(td), wave, lumin_pah))

                                        
    base.add_schreiber2016(models)

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
def build_base():
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
    build_bc2003(base)
    print("\nDONE\n")
    print('#' * 78)

722
    print("4- Importing Draine and Li (2007) models\n")
723 724 725 726
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

727
    print("5- Importing the updated Draine and Li (2007 models)\n")
728 729 730 731
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

732
    print("6- Importing Fritz et al. (2006) models\n")
733
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
734 735 736
    print("\nDONE\n")
    print('#' * 78)

737
    print("7- Importing Dale et al (2014) templates\n")
738 739 740
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
Médéric Boquien's avatar
Médéric Boquien committed
741

742
    print("8- Importing nebular lines and continuum\n")
743
    build_nebular(base)
744 745
    print("\nDONE\n")
    print('#' * 78)
746

747 748 749 750 751
    print("9- Importing Schreiber et al (2016) models\n")
    build_schreiber2016(base)
    print("\nDONE\n")
    print('#' * 78)
    
752 753
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
754 755 756

if __name__ == '__main__':
    build_base()