__init__.py 26.2 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
23 24
                          Dale2014, DL2007, DL2014, NebularLines,
                          NebularContinuum)
Yannick Roehlly's avatar
Yannick Roehlly committed
25 26


27 28 29 30 31
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
32
    separated by a space (or a carriage return). There are the time vector, 5
33 34 35 36 37 38 39 40 41 42 43 44
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
45
              Vector of the time grid of the SSP in Myr.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
73
    what_line = next(file_structure)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
116
                what_line = next(file_structure)
117

Yannick Roehlly's avatar
Yannick Roehlly committed
118
    # The time grid is in year, we want Myr.
119
    time_grid = np.array(time_grid, dtype=float)
Yannick Roehlly's avatar
Yannick Roehlly committed
120
    time_grid = time_grid * 1.e-6
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
    wavelength = wavelength * 0.1

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
    luminosity = luminosity * 3.826e27
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


139 140
def build_filters(base):
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

        new_filter = Filter(filter_name, filter_description,
                            filter_type, filter_table)

        # We normalise the filter and compute the effective wavelength.
        new_filter.normalise()

        base.add_filter(new_filter)

164 165 166

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
167

Yannick Roehlly's avatar
Yannick Roehlly committed
168 169
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
185
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
186 187
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
188
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
189 190 191 192 193 194 195 196
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
        # we don't take the first column which contains metallicity
        mass_table = mass_table[1:, mass_table[0] == metallicity]

Yannick Roehlly's avatar
Yannick Roehlly committed
197 198 199 200
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
215
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
216 217 218 219
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
Yannick Roehlly's avatar
Yannick Roehlly committed
220
            age_grid_orig = age_grid_orig * 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
221 222 223
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

224 225 226 227 228 229 230 231
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
232

233 234
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
235 236


237 238
def build_bc2003(base):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03//')
239

Yannick Roehlly's avatar
Yannick Roehlly committed
240 241
    # Time grid (1 Myr to 20 Gyr with 1 Myr step)
    time_grid = np.arange(1, 20000)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
        base_filename = bc03_dir + "bc2003_lr_" + key + "_" + imf + "_ssp"
        ssp_filename = base_filename + ".ised_ASCII"
        color3_filename = base_filename + ".3color"
        color4_filename = base_filename + ".4color"

        print("Importing %s..." % base_filename)

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
265 266 267 268 269 270 271
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
        color_table.append(color3_table[1])        # B4000
        color_table.append(color3_table[2])        # B4_VN
        color_table.append(color3_table[3])        # B4_SDSS
        color_table.append(color3_table[4])        # B(912)
272 273 274 275 276 277 278 279 280 281

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

        # Regrid the SSP data to the evenly spaced time grid.
        color_table = interpolate.interp1d(ssp_time, color_table)(time_grid)
        ssp_lumin = interpolate.interp1d(ssp_time,
                                         ssp_lumin)(time_grid)

282
        base.add_bc03(BC03(
283 284 285 286 287 288 289 290
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

291 292 293

def build_dh2002(base):
    dh2002_dir = os.path.join(os.path.dirname(__file__), 'dh2002/')
Yannick Roehlly's avatar
Yannick Roehlly committed
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    # Getting the alpha grid for the templates
    dhcal = np.genfromtxt(dh2002_dir + 'dhcal.dat')
    alpha_grid = dhcal[:, 1]

    # Getting the lambda grid for the templates (we checked that all share the
    # same grid).
    first_template = np.genfromtxt(dh2002_dir + 'irdh01.spec', skip_header=1)
    lambda_grid = first_template[:, 0] * 0.1  # Convert Å to nm

    templates = []

    for i in range(len(alpha_grid)):
        filename = dh2002_dir + 'irdh' + ("%02d" % (i + 1)) + '.spec'
        print("Importing %s..." % filename)
        table = np.genfromtxt(filename, skip_header=1)[:, 1]  # Luminosity
                                                              # column
311
        # The table give the luminosity density in Lsun/Å normalised to 1 Lsun
Yannick Roehlly's avatar
Yannick Roehlly committed
312 313 314 315 316 317 318 319 320
        # over the full spectrum. As we converted the wavelengths to nm, we
        # must multiply the density per 10 to keep the normalisation.
        table = table * 10
        templates.append(table)

    templates = np.array(templates)

    data = (alpha_grid, lambda_grid, templates)

321
    base.add_dh2002(data)
Yannick Roehlly's avatar
Yannick Roehlly committed
322

Médéric Boquien's avatar
Médéric Boquien committed
323

324 325 326 327 328 329 330 331 332 333 334 335 336
def build_dale2014(base):

    dh2002_dir = os.path.join(os.path.dirname(__file__), 'dh2002/')
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
    d14cal = np.genfromtxt(dh2002_dir + 'dhcal.dat')
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
337 338 339 340
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
341
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
342
    wave_stell = stell_emission_file[:, 0] * 0.1
343
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
344 345
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
346 347 348 349 350 351 352 353 354 355 356 357

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

Médéric Boquien's avatar
Médéric Boquien committed
358 359 360 361
    for al in range(1, len(alpha_grid), 1):
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
362 363
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
364 365 366
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
367 368
        lumin = lumin/norm

369
        base.add_dale2014(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
370 371

    # Emission from dust heated by AGN - Quasar template
372
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
373 374
    print("Importing {}...".format(filename))

375 376 377 378 379 380 381
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
    lumin_quasar = lumin_quasar / norm

    base.add_dale2014(Dale2014(1.0, 0.0, wave, lumin_quasar))
382

383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
def build_dl2007(base):
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2007(DL2007(qpah[model], umin, umin, wave, lumin))
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2007(DL2007(qpah[model], umin, umax, wave, lumin))


456 457 458
def build_dl2014(base):
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

459 460
    qpah = {"000":0.47, "010":1.12, "020":1.77, "030":2.50, "040":3.19,
            "050":3.90, "060":4.58, "070":5.26, "080":5.95, "090":6.63,
461
            "100":7.32}
462 463 464 465 466 467 468

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2014(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2014(DL2014(qpah[model], umin, 1e7, al, wave,
                                       lumin))


522
def build_fritz2006(base):
523
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
524

525 526
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
527 528
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
529 530 531
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
532
    r_ratio = ["10", "30", "60", "100", "150"]
533 534

    # Read and convert the wavelength
535 536 537
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
538 539 540 541 542 543 544 545
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
    #Number of wavelength: 178; Number of comments lines: 28
    nskip = 28
    blocksize = 178

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
            lumin_therm = lumin_therm / norm
            lumin_scatt = lumin_scatt / norm
            lumin_agn = lumin_agn / norm

            base.add_fritz2006(Fritz2006(params[4], params[3], params[2],
                                         params[1], params[0], psy[n], wave,
                                         lumin_therm, lumin_scatt, lumin_agn))

587

588 589 590 591 592 593 594 595 596
def build_nebular(base):
    lines_dir = os.path.join(os.path.dirname(__file__), 'nebular/')

    # Number of Lyman continuum photon to normalize the nebular continuum
    # templates
    nlyc_continuum = {'0.0001': 2.68786E+53, '0.0004': 2.00964E+53,
                      '0.004': 1.79593E+53, '0.008': 1.58843E+53,
                      '0.02': 1.24713E+53, '0.05': 8.46718E+52}

597
    for Z in ['0.0001', '0.0004', '0.004', '0.008', '0.02', '0.05']:
598 599 600 601
        filename = "{}lines_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, ratio1, ratio2, ratio3 = np.genfromtxt(filename, unpack=True,
                                                     usecols=(0, 3, 7, 11))
602

603 604
        # Convert wavelength from Å to nm
        wave *= 0.1
605

606 607 608 609
        # Convert log(flux) into flux (arbitrary units)
        ratio1 = 10**(ratio1-38.)
        ratio2 = 10**(ratio2-38.)
        ratio3 = 10**(ratio3-38.)
610

611
        # Normalize all lines to Hβ
612
        w = np.where(wave == 486.1)
613 614 615 616
        ratio1 = ratio1/ratio1[w]
        ratio2 = ratio2/ratio2[w]
        ratio3 = ratio3/ratio3[w]

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        lines = NebularLines(np.float(Z), -3., wave, ratio1)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -2., wave, ratio2)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -1., wave, ratio3)
        base.add_nebular_lines(lines)

        filename = "{}continuum_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, cont1, cont2, cont3 = np.genfromtxt(filename, unpack=True,
                                                  usecols=(0, 3, 7, 11))

        # Convert wavelength from Å to nm
        wave *= 0.1

        # Normalize flux from erg s¯¹ Hz¯¹ (Msun/yr)¯¹ to W nm¯¹ photon¯¹ s¯¹
        conv = 1e-7 * cst.c * 1e9 / (wave * wave) / nlyc_continuum[Z]
        cont1 *= conv
        cont2 *= conv
        cont3 *= conv

        cont = NebularContinuum(np.float(Z), -3., wave, cont1)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -2., wave, cont2)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -1., wave, cont3)
        base.add_nebular_continuum(cont)
648 649


650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
def build_base():
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
    build_bc2003(base)
    print("\nDONE\n")
    print('#' * 78)

    print("4- Importing Dale and Helou (2002) templates\n")
    build_dh2002(base)
    print("\nDONE\n")
    print('#' * 78)

675
    print("5- Importing Draine and Li (2007) models\n")
676 677 678 679
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

680 681 682 683 684 685
    print("6- Importing the updated Draine and Li (2007 models)\n")
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

    print("7- Importing Fritz et al. (2006) models\n")
686
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
687 688 689
    print("\nDONE\n")
    print('#' * 78)

690
    print("8- Importing Dale et al (2014) templates\n")
691 692 693
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
694
    
695
    print("9- Importing nebular lines and continuum\n")
696
    build_nebular(base)
697 698
    print("\nDONE\n")
    print('#' * 78)
699

700 701
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
702 703 704

if __name__ == '__main__':
    build_base()