results.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
# Copyright (C) 2017 Universidad de Antofagasta
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
# Author: Médéric Boquien

"""These classes manage the results from the analysis. The main class
ResultsManager contains instances of BayesResultsManager and BestResultsManager
that contain the bayesian and best-fit estimates of the physical properties
along with the names of the parameters, which are proportional to the mass,
etc. Each of these classes contain a merge() method that allows to combine
results of the analysis with different blocks of models.
"""

from astropy.table import Table, Column
import numpy as np

17
from .utils import SharedArray
18
19
20
21
22
23
24
25
26
27
28
29
30


class BayesResultsManager(object):
    """This class contains the results of the bayesian estimates of the
    physical properties of the analysed objects. It is constructed from a
    ModelsManager instance, which provides the required information on the
    shape of the arrays. Because it can contain the partial results for only
    one block of models, we also store the sum of the model weights (that is
    the likelihood) so we can merge different instances to compute the combined
    estimates of the physical properties.

    """
    def __init__(self, models):
31
        nobs = len(models.obs)
32
33
34
35
        self.propertiesnames = models.allpropnames
        extpropnames = models.extpropnames
        intpropnames = models.intpropnames
        self.nproperties = len(intpropnames) + len(extpropnames)
36
37
38
39
40
41

        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
42
43
44
45
        self.intmean = {prop: SharedArray(nobs) for prop in intpropnames}
        self.interror = {prop: SharedArray(nobs) for prop in intpropnames}
        self.extmean = {prop: SharedArray(nobs) for prop in extpropnames}
        self.exterror = {prop: SharedArray(nobs) for prop in extpropnames}
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.weight = SharedArray(nobs)

    @property
    def mean(self):
        return self._mean

    @mean.setter
    def mean(self, mean):
        self._mean = mean

    @property
    def error(self):
        return self._error

    @error.setter
    def error(self, error):
        self._error = error

    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, weight):
        self._weight = weight
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BayesResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BayesResultsManager)
                    for result in results)):
            raise TypeError("A list of BayesResultsManager is required.")

        merged = results[0]
89
        intmean = {prop: np.array([result.intmean[prop]
90
91
                                   for result in results])
                   for prop in merged.intmean}
92
        interror = {prop: np.array([result.interror[prop]
93
94
                                    for result in results])
                    for prop in merged.interror}
95
        extmean = {prop: np.array([result.extmean[prop]
96
97
                                   for result in results])
                   for prop in merged.extmean}
98
        exterror = {prop: np.array([result.exterror[prop]
99
100
                                    for result in results])
                    for prop in merged.exterror}
101
        weight = np.array([result.weight for result in results])
102
103
104
105

        totweight = np.sum(weight, axis=0)

        for prop in merged.intmean:
106
            merged.intmean[prop][:] = np.sum(
107
108
109
110
111
112
113
                intmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
114
115
            merged.interror[prop][:] = np.sqrt(np.sum(
                weight * (interror[prop]**2. + (intmean[prop]-merged.intmean[prop])**2), axis=0) / totweight)
116
117

        for prop in merged.extmean:
118
            merged.extmean[prop][:] = np.sum(
119
120
121
122
123
124
125
                extmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
126
127
            merged.exterror[prop][:] = np.sqrt(np.sum(
                weight * (exterror[prop]**2. + (extmean[prop]-merged.extmean[prop])**2), axis=0) / totweight)
128
129
130

        for prop in merged.extmean:
            if prop.endswith('_log'):
131
132
                merged.exterror[prop][:] = \
                    np.maximum(0.02, merged.exterror[prop])
133
            else:
134
135
136
                merged.exterror[prop][:] = \
                    np.maximum(0.05 * merged.extmean[prop],
                               merged.exterror[prop])
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
        return merged


class BestResultsManager(object):
    """This class contains the physical properties of the best fit of the
    analysed objects. It is constructed from a ModelsManager instance, which
    provides the required information on the shape of the arrays. Because it
    can contain the partial results for only one block of models, we also store
    the index so we can merge different instances to compute the best fit.

    """

    def __init__(self, models):
        self.obs = models.obs
152
        nobs = len(models.obs)
153
154
155
156
157
        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
158
        self.flux = {band: SharedArray(nobs) for band in models.obs.bands}
159
160
        allintpropnames = models.allintpropnames
        allextpropnames = models.allextpropnames
161
162
163
164
165
166
167
        self.intprop = {prop: SharedArray(nobs)
                        for prop in allintpropnames}
        self.extprop = {prop: SharedArray(nobs)
                        for prop in allextpropnames}
        self.chi2 = SharedArray(nobs)
        self.scaling = SharedArray(nobs)

168
        # We store the index as a float to work around python issue #10746
169
        self.index = SharedArray(nobs)
170
171

    @property
172
    def flux(self):
173
174
175
176
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
177
178
179
180
181
        return self._flux

    @flux.setter
    def flux(self, flux):
        self._flux = flux
182

183
    @property
184
    def intprop(self):
185
186
187
188
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
189
190
191
192
193
        return self._intprop

    @intprop.setter
    def intprop(self, intprop):
        self._intprop = intprop
194
195

    @property
196
    def extprop(self):
197
198
199
200
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
201
        return self._extprop
202

203
204
205
    @extprop.setter
    def extprop(self, extprop):
        self._extprop = extprop
206
207
208
209
210
211
212

    @property
    def chi2(self):
        """Returns a shared array containing the raw chi² of the best fit for
        each observation.

        """
213
        return self._chi2
214

215
216
217
218
    @chi2.setter
    def chi2(self, chi2):
        self._chi2 = chi2

219
220
221
222
223
224
    @property
    def index(self):
        """Returns a shared array containing the index of the best fit for each
        observation.

        """
225
        return self._index
226

227
228
229
230
    @index.setter
    def index(self, index):
        self._index = index

231
232
233
234
235
236
    @property
    def scaling(self):
        """Returns a shared array containing the scaling of the best fit for each
        observation.

        """
237
        return self._scaling
238
239
240
241
242

    @scaling.setter
    def scaling(self, scaling):
        self._scaling = scaling

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BestResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BestResultsManager)
                    for result in results)):
            raise TypeError("A list of BestResultsManager is required.")

        if len(results) == 1:
            return results[0]

262
        best = np.argmin([result.chi2 for result in results], axis=0)
263
264

        merged = results[0]
265
266
        for iobs, bestidx in enumerate(best):
            for band in merged.flux:
267
268
                merged.flux[band][iobs] = \
                    results[bestidx].flux[band][iobs]
269
            for prop in merged.intprop:
270
271
                merged.intprop[prop][iobs] = \
                    results[bestidx].intprop[prop][iobs]
272
            for prop in merged.extprop:
273
274
                merged.extprop[prop][iobs] = \
                    results[bestidx].extprop[prop][iobs]
275
            merged.chi2[iobs] = results[bestidx].chi2[iobs]
276
            merged.scaling[iobs] = results[bestidx].scaling[iobs]
277
            merged.index[iobs] = results[bestidx].index[iobs]
278
279
280
281
282
283
284
285

        return merged

    def analyse_chi2(self):
        """Function to analyse the best chi^2 and find out what fraction of
         objects seems to be overconstrainted.

        """
286
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        chi2_red = self.chi2 / (nobs - 1)
        # If low values of reduced chi^2, it means that the data are overfitted
        # Errors might be under-estimated or not enough valid data.
        print("\n{}% of the objects have chi^2_red~0 and {}% chi^2_red<0.5"
              .format(np.round((chi2_red < 1e-12).sum() / chi2_red.size, 1),
                      np.round((chi2_red < 0.5).sum() / chi2_red.size, 1)))


class ResultsManager(object):
    """This class contains the physical properties (best fit and bayesian) of
    the analysed objects. It is constructed from a ModelsManager instance,
    which provides the required information to initialise the instances of
    BestResultsManager and BayesResultsManager that store the results.

    """

    def __init__(self, models):
        self.conf = models.conf
        self.obs = models.obs
        self.params = models.params

        self.bayes = BayesResultsManager(models)
        self.best = BestResultsManager(models)

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of ResultsManager instances
            List of the partial results to be merged

        """
        merged = results[0]
        merged.bayes = BayesResultsManager.merge([result.bayes
                                                  for result in results])
        merged.best = BestResultsManager.merge([result.best
                                                for result in results])

        return merged

    def save(self, filename):
        """Save the estimated values derived from the analysis of the PDF and
        the parameters associated with the best fit. A simple text file and a
        FITS file are generated.

        Parameters
        ----------
        filename:

        """
        table = Table()

        table.add_column(Column(self.obs.table['id'], name="id"))

345
        for prop in sorted(self.bayes.intmean):
346
            table.add_column(Column(self.bayes.intmean[prop],
347
                                    name="bayes."+prop))
348
            table.add_column(Column(self.bayes.interror[prop],
349
350
                                    name="bayes."+prop+"_err"))
        for prop in sorted(self.bayes.extmean):
351
            table.add_column(Column(self.bayes.extmean[prop],
352
                                    name="bayes."+prop))
353
            table.add_column(Column(self.bayes.exterror[prop],
354
                                    name="bayes."+prop+"_err"))
355
356

        table.add_column(Column(self.best.chi2, name="best.chi_square"))
357
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
358
359
360
361
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        table.add_column(Column(self.best.chi2 / (nobs - 1),
                                name="best.reduced_chi_square"))

362
        for prop in sorted(self.best.intprop):
363
            table.add_column(Column(self.best.intprop[prop],
364
365
                                    name="best."+prop))
        for prop in sorted(self.best.extprop):
366
            table.add_column(Column(self.best.extprop[prop],
367
368
369
                                    name="best."+prop))

        for band in self.obs.bands:
370
            table.add_column(Column(self.best.flux[band],
371
                                    name="best."+band, unit='mJy'))
372
373
374
375
376


        table.write("out/{}.txt".format(filename), format='ascii.fixed_width',
                    delimiter=None)
        table.write("out/{}.fits".format(filename), format='fits')