__init__.py 27 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
23 24
                          Dale2014, DL2007, DL2014, NebularLines,
                          NebularContinuum)
Yannick Roehlly's avatar
Yannick Roehlly committed
25 26


27 28 29 30 31
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
32
    separated by a space (or a carriage return). There are the time vector, 5
33 34 35 36 37 38 39 40 41 42 43 44
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
45
              Vector of the time grid of the SSP in Myr.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
73
    what_line = next(file_structure)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
116
                what_line = next(file_structure)
117

Yannick Roehlly's avatar
Yannick Roehlly committed
118
    # The time grid is in year, we want Myr.
119
    time_grid = np.array(time_grid, dtype=float)
Yannick Roehlly's avatar
Yannick Roehlly committed
120
    time_grid = time_grid * 1.e-6
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
    wavelength = wavelength * 0.1

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
    luminosity = luminosity * 3.826e27
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


139 140
def build_filters(base):
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

        new_filter = Filter(filter_name, filter_description,
                            filter_type, filter_table)

        # We normalise the filter and compute the effective wavelength.
160 161 162 163 164 165 166 167
        # If the filter is a pseudo-filter used to compute line fluxes, it
        # should not be normalised.
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
            new_filter.effective_wavelength = np.mean(
                filter_table[0][filter_table[1] > 0]
            )
Yannick Roehlly's avatar
Yannick Roehlly committed
168 169 170

        base.add_filter(new_filter)

171 172 173

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
174

Yannick Roehlly's avatar
Yannick Roehlly committed
175 176
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
192
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
193 194
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
195
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
196 197 198 199 200
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
201 202 203 204
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
205

Yannick Roehlly's avatar
Yannick Roehlly committed
206 207 208 209
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
224
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
225 226 227 228
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
Yannick Roehlly's avatar
Yannick Roehlly committed
229
            age_grid_orig = age_grid_orig * 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
230 231 232
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

233 234 235
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        lambda_grid_resamp = np.around(np.logspace(np.log10(10000),
                                                   np.log10(160000), 50))
        argmin = np.argmin(10000.-lambda_grid > 0)-1
        flux_age_resamp = 10.**interpolate.interp1d(
                                    np.log10(lambda_grid[argmin:]),
                                    np.log10(flux_age[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(lambda_grid_resamp))

        lambda_grid = np.hstack([lambda_grid[:argmin+1], lambda_grid_resamp])
        flux_age = np.vstack([flux_age[:argmin+1, :], flux_age_resamp])


252 253 254 255 256
        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
257

258 259
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
260 261


262 263
def build_bc2003(base):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03//')
264

265 266
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
        base_filename = bc03_dir + "bc2003_lr_" + key + "_" + imf + "_ssp"
        ssp_filename = base_filename + ".ised_ASCII"
        color3_filename = base_filename + ".3color"
        color4_filename = base_filename + ".4color"

        print("Importing %s..." % base_filename)

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
290 291 292 293 294 295 296
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
        color_table.append(color3_table[1])        # B4000
        color_table.append(color3_table[2])        # B4_VN
        color_table.append(color3_table[3])        # B4_SDSS
        color_table.append(color3_table[4])        # B(912)
297 298 299 300 301 302 303 304 305 306

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

        # Regrid the SSP data to the evenly spaced time grid.
        color_table = interpolate.interp1d(ssp_time, color_table)(time_grid)
        ssp_lumin = interpolate.interp1d(ssp_time,
                                         ssp_lumin)(time_grid)

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                np.log10(160000), 50))
        argmin = np.argmin(10000.-ssp_wave > 0)-1
        ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    np.log10(ssp_wave[argmin:]),
                                    np.log10(ssp_lumin[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(ssp_wave_resamp))

        ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
        ssp_lumin = np.vstack([ssp_lumin[:argmin+1, :], ssp_lumin_resamp])

322
        base.add_bc03(BC03(
323 324 325 326 327 328 329 330
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

331

332 333 334 335
def build_dale2014(base):
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
336
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
337 338 339
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
340
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
341 342
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
343 344 345 346
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
347
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
348
    wave_stell = stell_emission_file[:, 0] * 0.1
349
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
350 351
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
352 353 354 355 356 357 358 359 360 361 362 363

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

364
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
365 366 367
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
368 369
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
370 371 372
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
373 374
        lumin = lumin/norm

375
        base.add_dale2014(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
376 377

    # Emission from dust heated by AGN - Quasar template
378
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
379 380
    print("Importing {}...".format(filename))

381 382 383 384 385 386 387
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
    lumin_quasar = lumin_quasar / norm

    base.add_dale2014(Dale2014(1.0, 0.0, wave, lumin_quasar))
388

389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
def build_dl2007(base):
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2007(DL2007(qpah[model], umin, umin, wave, lumin))
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2007(DL2007(qpah[model], umin, umax, wave, lumin))


462 463 464
def build_dl2014(base):
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

465 466
    qpah = {"000":0.47, "010":1.12, "020":1.77, "030":2.50, "040":3.19,
            "050":3.90, "060":4.58, "070":5.26, "080":5.95, "090":6.63,
467
            "100":7.32}
468 469 470 471 472 473 474

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2014(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2014(DL2014(qpah[model], umin, 1e7, al, wave,
                                       lumin))


528
def build_fritz2006(base):
529
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
530

531 532
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
533 534
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
535 536 537
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
538
    r_ratio = ["10", "30", "60", "100", "150"]
539 540

    # Read and convert the wavelength
541 542 543
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
544 545 546 547 548 549 550 551
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
    #Number of wavelength: 178; Number of comments lines: 28
    nskip = 28
    blocksize = 178

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
            lumin_therm = lumin_therm / norm
            lumin_scatt = lumin_scatt / norm
            lumin_agn = lumin_agn / norm
588

589
            base.add_fritz2006(Fritz2006(params[4], params[3], params[2],
590 591
                                         params[1], params[0], psy[n], wave,
                                         lumin_therm, lumin_scatt,lumin_agn))
592

593

594 595 596 597 598 599 600 601 602
def build_nebular(base):
    lines_dir = os.path.join(os.path.dirname(__file__), 'nebular/')

    # Number of Lyman continuum photon to normalize the nebular continuum
    # templates
    nlyc_continuum = {'0.0001': 2.68786E+53, '0.0004': 2.00964E+53,
                      '0.004': 1.79593E+53, '0.008': 1.58843E+53,
                      '0.02': 1.24713E+53, '0.05': 8.46718E+52}

603
    for Z in ['0.0001', '0.0004', '0.004', '0.008', '0.02', '0.05']:
604 605 606 607
        filename = "{}lines_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, ratio1, ratio2, ratio3 = np.genfromtxt(filename, unpack=True,
                                                     usecols=(0, 3, 7, 11))
608

609 610
        # Convert wavelength from Å to nm
        wave *= 0.1
611

612 613 614 615
        # Convert log(flux) into flux (arbitrary units)
        ratio1 = 10**(ratio1-38.)
        ratio2 = 10**(ratio2-38.)
        ratio3 = 10**(ratio3-38.)
616

617
        # Normalize all lines to Hβ
618
        w = np.where(wave == 486.1)
619 620 621 622
        ratio1 = ratio1/ratio1[w]
        ratio2 = ratio2/ratio2[w]
        ratio3 = ratio3/ratio3[w]

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        lines = NebularLines(np.float(Z), -3., wave, ratio1)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -2., wave, ratio2)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -1., wave, ratio3)
        base.add_nebular_lines(lines)

        filename = "{}continuum_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, cont1, cont2, cont3 = np.genfromtxt(filename, unpack=True,
                                                  usecols=(0, 3, 7, 11))

        # Convert wavelength from Å to nm
        wave *= 0.1

        # Normalize flux from erg s¯¹ Hz¯¹ (Msun/yr)¯¹ to W nm¯¹ photon¯¹ s¯¹
        conv = 1e-7 * cst.c * 1e9 / (wave * wave) / nlyc_continuum[Z]
        cont1 *= conv
        cont2 *= conv
        cont3 *= conv

        cont = NebularContinuum(np.float(Z), -3., wave, cont1)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -2., wave, cont2)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -1., wave, cont3)
        base.add_nebular_continuum(cont)
654 655


656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
def build_base():
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
    build_bc2003(base)
    print("\nDONE\n")
    print('#' * 78)

676
    print("4- Importing Draine and Li (2007) models\n")
677 678 679 680
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

681
    print("5- Importing the updated Draine and Li (2007 models)\n")
682 683 684 685
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

686
    print("6- Importing Fritz et al. (2006) models\n")
687
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
688 689 690
    print("\nDONE\n")
    print('#' * 78)

691
    print("7- Importing Dale et al (2014) templates\n")
692 693 694
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
695
    
696
    print("8- Importing nebular lines and continuum\n")
697
    build_nebular(base)
698 699
    print("\nDONE\n")
    print('#' * 78)
700

701 702
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
703 704 705

if __name__ == '__main__':
    build_base()