__init__.py 13.2 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2
3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Author: Yannick Roehlly
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7
8
This class represents a Spectral Energy Distribution (SED) as used by pcigale.
Such SED is characterised by:
Yannick Roehlly's avatar
Yannick Roehlly committed
9

Yannick Roehlly's avatar
Yannick Roehlly committed
10
11
- sfh: a tuple (time [Myr], Star Formation Rate [Msun/yr]) representing the
  Star Formation History of the galaxy.
Yannick Roehlly's avatar
Yannick Roehlly committed
12

Yannick Roehlly's avatar
Yannick Roehlly committed
13
14
- modules: a list of tuples (module name, parameter dictionary) containing all
  the pcigale modules the SED 'went through'.
Yannick Roehlly's avatar
Yannick Roehlly committed
15

Yannick Roehlly's avatar
Yannick Roehlly committed
16
- wavelength_grid: the grid of wavelengths [nm] used for the luminosities.
Yannick Roehlly's avatar
Yannick Roehlly committed
17

Yannick Roehlly's avatar
Yannick Roehlly committed
18
19
- contribution_names: the list of the names of the luminosity contributions
  making part of the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
20

Yannick Roehlly's avatar
Yannick Roehlly committed
21
22
23
24
- luminosities: a two axis numpy array containing all the luminosity density
  [W/nm] contributions to the SED. The index in the first axis corresponds to
  the contribution (in the contribution_names list) and the index of the
  second axis corresponds to the wavelength in the wavelength grid.
Yannick Roehlly's avatar
Yannick Roehlly committed
25

Yannick Roehlly's avatar
Yannick Roehlly committed
26
- info: a dictionary containing various information about the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
27

28
- mass_proportional_info: the set of keys in the info dictionary whose value
Yannick Roehlly's avatar
Yannick Roehlly committed
29
  is proportional to the galaxy mass.
Yannick Roehlly's avatar
Yannick Roehlly committed
30

Yannick Roehlly's avatar
Yannick Roehlly committed
31
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
32

Yannick Roehlly's avatar
Yannick Roehlly committed
33
import numpy as np
34
from collections import OrderedDict
Yannick Roehlly's avatar
Yannick Roehlly committed
35
from . import utils
36
from .io.vo import save_sed_to_vo
37
from scipy.constants import c, parsec
38
39
from ..data import Database

Yannick Roehlly's avatar
Yannick Roehlly committed
40

41
42
43
44
45
# Time lapse used to compute the average star formation rate. We use a
# constant to keep it easily changeable for advanced user while limiting the
# number of parameters. The value is in Myr.
AV_LAPSE = 100

46

Yannick Roehlly's avatar
Yannick Roehlly committed
47
48
class SED(object):
    """Spectral Energy Distribution with associated information
Yannick Roehlly's avatar
Yannick Roehlly committed
49
50
    """

51
52
53
54
    # We declare the filters cache here as to be efficient it needs to be
    # shared between different objects.
    cache_filters = {}

Yannick Roehlly's avatar
Yannick Roehlly committed
55
56
57
58
59
    def __init__(self, sfh=None):
        """Create a new SED

        Parameters
        ----------
60
        sfh: (numpy.array, numpy.array)
Yannick Roehlly's avatar
Yannick Roehlly committed
61
62
63
64
65
66
            Star Formation History: tuple of two numpy array, the first is the
            time in Myr and the second is the Star Formation Rate in Msun/yr.
            If no SFH is given, it's set to None.

        """
        self.sfh = sfh
Yannick Roehlly's avatar
Yannick Roehlly committed
67
68
69
        self.modules = []
        self.wavelength_grid = None
        self.contribution_names = []
70
        self.luminosity = None
Yannick Roehlly's avatar
Yannick Roehlly committed
71
        self.luminosities = None
72
        self.info = OrderedDict()
73
        self.mass_proportional_info = set()
Yannick Roehlly's avatar
Yannick Roehlly committed
74

Yannick Roehlly's avatar
Yannick Roehlly committed
75
76
77
78
79
80
81
82
83
84
85
    @property
    def sfh(self):
        """Return a copy of the star formation history
        """
        if self._sfh is None:
            return None
        else:
            return np.copy(self._sfh)

    @sfh.setter
    def sfh(self, value):
Yannick Roehlly's avatar
Yannick Roehlly committed
86
87
88
89

        # The SFH can be set multiple times. Maybe it's better to make is
        # settable only once and then provide an update_sfh method for when
        # it's needed.
Yannick Roehlly's avatar
Yannick Roehlly committed
90
91
        self._sfh = value

92
93
94
        if value:
            sfh_time, sfh_sfr = value
            self._sfh = value
Yannick Roehlly's avatar
Yannick Roehlly committed
95
96
97
98
99
100
            self.add_info("sfh.sfr", sfh_sfr[-1], True, force=True)
            self.add_info("sfh.sfr10Myrs", np.mean(sfh_sfr[-10:]), True,
                          force=True)
            self.add_info("sfh.sfr100Myrs", np.mean(sfh_sfr[-100:]), True,
                          force=True)
            self.add_info("sfh.age", sfh_time[-1], False, force=True)
101

102
103
104
    @property
    def fnu(self):
        """Total Fν flux density of the SED
Yannick Roehlly's avatar
Yannick Roehlly committed
105

106
107
        Return the total Fν density vector, i.e the total luminosity converted
        to Fν flux in mJy.
Yannick Roehlly's avatar
Yannick Roehlly committed
108
109
        """

Yannick Roehlly's avatar
Yannick Roehlly committed
110
        # Fλ flux density in W/m²/nm
111
        f_lambda = utils.luminosity_to_flux(self.luminosity,
Médéric Boquien's avatar
Médéric Boquien committed
112
113
                                            self.info
                                            ['universe.luminosity_distance'])
Yannick Roehlly's avatar
Yannick Roehlly committed
114

115
116
        # Fν flux density in mJy
        f_nu = utils.lambda_flambda_to_fnu(self.wavelength_grid, f_lambda)
Yannick Roehlly's avatar
Yannick Roehlly committed
117

118
        return f_nu
Yannick Roehlly's avatar
Yannick Roehlly committed
119

120
    def add_info(self, key, value, mass_proportional=False, force=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
121
122
123
        """
        Add a key / value to the information dictionary

Yannick Roehlly's avatar
Yannick Roehlly committed
124
        If the key is present in the dictionary, it will raise an exception.
Yannick Roehlly's avatar
Yannick Roehlly committed
125
        Use this method (instead of direct value assignment ) to avoid
126
        overriding an already present information.
Yannick Roehlly's avatar
Yannick Roehlly committed
127

Yannick Roehlly's avatar
Yannick Roehlly committed
128
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
129
        ----------
130
        key: any immutable
Yannick Roehlly's avatar
Yannick Roehlly committed
131
           The key used to retrieve the information.
132
        value: anything
Yannick Roehlly's avatar
Yannick Roehlly committed
133
           The information.
134
        mass_proportional: boolean
135
136
           If True, the added variable is set as proportional to the
           mass.
137
        force: boolean
138
           If false (default), adding a key that already exists in the info
139
140
           dictionary will raise an error. If true, doing this will update
           the associated value.
Yannick Roehlly's avatar
Yannick Roehlly committed
141
142

        """
143
        if (key not in self.info) or force:
Yannick Roehlly's avatar
Yannick Roehlly committed
144
            self.info[key] = value
145
            if mass_proportional:
146
                self.mass_proportional_info.add(key)
Yannick Roehlly's avatar
Yannick Roehlly committed
147
        else:
148
            raise KeyError("The information %s is already present "
Yannick Roehlly's avatar
Yannick Roehlly committed
149
150
                           "in the SED. " % key)

151
152
153
    def add_module(self, module_name, module_conf):
        """Add a new module information to the SED.

Yannick Roehlly's avatar
Yannick Roehlly committed
154
        Parameters
155
        ----------
156
        module_name: string
157
158
            Name of the module. This name can be suffixed with anything
            using a dot.
159
        module_conf: dictionary
Yannick Roehlly's avatar
Yannick Roehlly committed
160
            Dictionary containing the module parameters.
161

Yannick Roehlly's avatar
Yannick Roehlly committed
162
        TODO: Complete the parameter dictionary with the default values from
163
164
              the module if they are not present.

Yannick Roehlly's avatar
Yannick Roehlly committed
165
        """
166
        self.modules.append((module_name, module_conf))
Yannick Roehlly's avatar
Yannick Roehlly committed
167

168
169
170
171
    def add_contribution(self, contribution_name, results_wavelengths,
                         results_lumin):
        """
        Add a new luminosity contribution to the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
172
173
174
175
176
177
178
179

        The luminosity contribution of the module is added to the contribution
        table doing an interpolation between the current wavelength grid and
        the grid of the module contribution. During the interpolation,
        everything that is outside of the concerned wavelength domain has its
        luminosity set to 0. Also, the name of the contribution is added to
        the contribution names array.

Yannick Roehlly's avatar
Yannick Roehlly committed
180
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
181
        ----------
182
        contribution_name: string
Yannick Roehlly's avatar
Yannick Roehlly committed
183
184
185
186
            Name of the contribution added. This name is used to retrieve the
            luminosity contribution and allows one module to add more than
            one contribution.

187
        results_wavelengths: array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
188
189
            The vector of the wavelengths of the module results (in nm).

190
        results_lumin: array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
191
192
193
194
195
196
197
            The vector of the Lλ luminosities (in W/nm) of the module results.

        """
        self.contribution_names.append(contribution_name)

        # If the SED luminosity table is empty, then there is nothing to
        # compute.
198
        if self.luminosity is None:
199
200
201
            self.wavelength_grid = results_wavelengths.copy()
            self.luminosity = results_lumin.copy()
            self.luminosities = results_lumin.copy()
Yannick Roehlly's avatar
Yannick Roehlly committed
202
        else:
203
204
            # If the added luminosity contribution changes the SED wavelength
            # grid, we interpolate everything on a common wavelength grid.
205
206
207
208
            if (results_wavelengths.size != self.wavelength_grid.size or
                    not np.all(results_wavelengths == self.wavelength_grid)):
                # Interpolate each luminosity component to the new wavelength
                # grid setting everything outside the wavelength domain to 0.
209
210
                self.wavelength_grid, self.luminosities = \
                    utils.interpolate_lumin(self.wavelength_grid,
211
                                            self.luminosities,
212
213
214
                                            results_wavelengths,
                                            results_lumin)

215
                self.luminosity = self.luminosities.sum(0)
216
217
218
            else:
                self.luminosities = np.vstack((self.luminosities,
                                               results_lumin))
219
                self.luminosity += results_lumin
Yannick Roehlly's avatar
Yannick Roehlly committed
220
221
222
223
224
225
226

    def get_lumin_contribution(self, name):
        """Get the luminosity vector of a given contribution

        If the name of the contribution is not unique in the SED, the flux of
        the last one is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
227
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
228
        ----------
229
        name: string
Yannick Roehlly's avatar
Yannick Roehlly committed
230
231
232
233
            Name of the contribution

        Returns
        -------
234
        luminosities: array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
235
236
237
238
239
            Vector of the luminosity density contribution based on the SED
            wavelength grid.

        """
        # Find the index of the _last_ name element
Médéric Boquien's avatar
Médéric Boquien committed
240
241
        idx = (len(self.contribution_names) - 1 -
               self.contribution_names[::-1].index(name))
Yannick Roehlly's avatar
Yannick Roehlly committed
242
        return self.luminosities[idx]
Yannick Roehlly's avatar
Yannick Roehlly committed
243

244
    def compute_fnu(self, filter_name):
Yannick Roehlly's avatar
Yannick Roehlly committed
245
        """
246
        Compute the Fν flux density in a given filter
Yannick Roehlly's avatar
Yannick Roehlly committed
247
248
249
250

        As the SED stores the Lλ luminosity density, we first compute the Fλ
        flux density. Fλ is the integration of the Lλ luminosity multiplied by
        the filter transmission, normalised to this transmission and corrected
251
        by the luminosity distance of the source.
Yannick Roehlly's avatar
Yannick Roehlly committed
252

Yannick Roehlly's avatar
Yannick Roehlly committed
253
        Fλ is in W/m²/nm. At redshift 0, the flux is computed at 10 pc. Then,
Yannick Roehlly's avatar
Yannick Roehlly committed
254
255
256
257
258
259
260
261
262
        to compute Fν, we make the approximation:

        Fν = λeff / c . λeff . Fλ

        Fν is computed in W/m²/Hz and then converted to mJy.

        If the SED spectrum does not cover all the filter response table,
        -99 is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
263
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
264
        ----------
265
266
267
        filter_name: string
            Name of the filter to integrate into. It must be presnt in the
            database.
Yannick Roehlly's avatar
Yannick Roehlly committed
268
269
270

        Return
        ------
271
        fnu: float
Yannick Roehlly's avatar
Yannick Roehlly committed
272
273
274
            The integrated Fν density in mJy.
        """

275
        wavelength = self.wavelength_grid
Yannick Roehlly's avatar
Yannick Roehlly committed
276

277
278
279
280
281
282
283
        # First we try to fetch the filter's wavelength, transmission and
        # effective wavelength from the cache. The two keys are the size of the
        # spectrum wavelength grid and the name of the filter. The first key is
        # necessary because different spectra may have different sampling. To
        # avoid having the resample the filter every time on the optimal grid
        # (spectrum+filter), we store the resampled filter. That way we only
        # have to resample to spectrum.
284
285
286
287
        if 'redshift' in self.info:
            key = (wavelength.size, filter_name, self.info['redshift'])
        else:
            key = (wavelength.size, filter_name, 0.)
288
        if key in self.cache_filters:
289
            wavelength_r, transmission_r, lambda_eff = self.cache_filters[key]
Yannick Roehlly's avatar
Yannick Roehlly committed
290
        else:
291
292
293
294
295
296
297
298
299
300
301
302
            with Database() as db:
                filter_ = db.get_filter(filter_name)
            trans_table = filter_.trans_table
            lambda_eff = filter_.effective_wavelength
            lambda_min = filter_.trans_table[0][0]
            lambda_max = filter_.trans_table[0][-1]

            # Test if the filter covers all the spectrum extent. If not then
            # the flux is not defined
            if ((wavelength[0] > lambda_min) or (wavelength[-1] < lambda_max)):
                return -99.

Yannick Roehlly's avatar
Yannick Roehlly committed
303
304
305
            # We regrid both spectrum and filter to the best wavelength grid
            # to avoid interpolating a high wavelength density curve to a low
            # density one. Also, we limit the work wavelength domain to the
306
            # filter one.
Médéric Boquien's avatar
Médéric Boquien committed
307
308
            w = np.where((wavelength >= lambda_min) &
                         (wavelength <= lambda_max))
309
            wavelength_r = utils.best_grid(wavelength[w], trans_table[0])
Médéric Boquien's avatar
Médéric Boquien committed
310
311
            transmission_r = np.interp(wavelength_r, trans_table[0],
                                       trans_table[1])
Yannick Roehlly's avatar
Yannick Roehlly committed
312

Médéric Boquien's avatar
Médéric Boquien committed
313
314
            self.cache_filters[key] = (wavelength_r, transmission_r,
                                       lambda_eff)
315

316
        l_lambda_r = np.interp(wavelength_r, wavelength, self.luminosity)
Yannick Roehlly's avatar
Yannick Roehlly committed
317

318
        if 'universe.luminosity_distance' in self.info:
319
320
321
            dist = self.info['universe.luminosity_distance']
        else:
            dist = 10. * parsec
Yannick Roehlly's avatar
Yannick Roehlly committed
322

323
324
325
        f_lambda = utils.luminosity_to_flux(
            np.trapz(transmission_r * l_lambda_r, wavelength_r),
            dist)
Yannick Roehlly's avatar
Yannick Roehlly committed
326

327
328
        # Return Fν in mJy. The 1e-9 factor is because λ is in nm and 1e29 for
        # convert from W/m²/Hz to mJy.
Médéric Boquien's avatar
Médéric Boquien committed
329
        return lambda_eff * lambda_eff * f_lambda * 1e-9 / c * 1e29
330
331
332
333
334
335
336

    def to_votable(self, filename, mass=1.):
        """
        Save the SED to a VO-table file

        Parameters
        ----------
337
        filename: string
338
            Name of the VO-table file
339
        mass: float
340
341
342
343
344
            Galaxy mass in solar mass. When need, the saved data will be
            multiplied by this mass.

        """
        save_sed_to_vo(self, filename, mass)
345
346
347

    def copy(self):
        sed = SED()
348
349
        if self.sfh is not None:
            sed._sfh = (self._sfh[0], self._sfh[1])
350
351
352
353
354
355
356
357
358
359
360
        sed.modules = self.modules[:]
        if self.wavelength_grid is not None:
            sed.wavelength_grid = self.wavelength_grid.copy()
            sed.luminosity = self.luminosity.copy()
            sed.luminosities = self.luminosities.copy()
        else:
            sed.wavelength_grid = None
            sed.luminosity = None
            sed.luminosities = None
        sed.contribution_names = self.contribution_names[:]
        sed.info = self.info.copy()
361
        sed.mass_proportional_info = self.mass_proportional_info.copy()
362
363

        return sed