__init__.py 13 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
Yannick Roehlly's avatar
Yannick Roehlly committed
2
"""Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
Yannick Roehlly's avatar
Yannick Roehlly committed
3
4
5
6
Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt

@author: Yannick Roehlly <yannick.roehlly@oamp.fr>

Yannick Roehlly's avatar
Yannick Roehlly committed
7
8
This class represents a Spectral Energy Distribution (SED) as used by pcigale.
Such SED is characterised by:
Yannick Roehlly's avatar
Yannick Roehlly committed
9

Yannick Roehlly's avatar
Yannick Roehlly committed
10
11
- sfh: a tuple (time [Myr], Star Formation Rate [Msun/yr]) representing the
  Star Formation History of the galaxy.
Yannick Roehlly's avatar
Yannick Roehlly committed
12

Yannick Roehlly's avatar
Yannick Roehlly committed
13
14
- modules: a list of tuples (module name, parameter dictionary) containing all
  the pcigale modules the SED 'went through'.
Yannick Roehlly's avatar
Yannick Roehlly committed
15

Yannick Roehlly's avatar
Yannick Roehlly committed
16
- wavelength_grid: the grid of wavelengths [nm] used for the luminosities.
Yannick Roehlly's avatar
Yannick Roehlly committed
17

Yannick Roehlly's avatar
Yannick Roehlly committed
18
19
- contribution_names: the list of the names of the luminosity contributions
  making part of the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
20

Yannick Roehlly's avatar
Yannick Roehlly committed
21
22
23
24
- luminosities: a two axis numpy array containing all the luminosity density
  [W/nm] contributions to the SED. The index in the first axis corresponds to
  the contribution (in the contribution_names list) and the index of the
  second axis corresponds to the wavelength in the wavelength grid.
Yannick Roehlly's avatar
Yannick Roehlly committed
25

Yannick Roehlly's avatar
Yannick Roehlly committed
26
- info: a dictionnary containing various information about the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
27

Yannick Roehlly's avatar
Yannick Roehlly committed
28
29
- mass_proportional_info: the list of keys in the info dictionnary whose value
  is proportional to the galaxy mass.
Yannick Roehlly's avatar
Yannick Roehlly committed
30

Yannick Roehlly's avatar
Yannick Roehlly committed
31
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
32
33


Yannick Roehlly's avatar
Yannick Roehlly committed
34
35
36
37
38
import numpy as np
from . import utils
from itertools import chain
from scipy.constants import c
from scipy.interpolate import interp1d
Yannick Roehlly's avatar
Yannick Roehlly committed
39

40

Yannick Roehlly's avatar
Yannick Roehlly committed
41
42
class SED(object):
    """Spectral Energy Distribution with associated information
Yannick Roehlly's avatar
Yannick Roehlly committed
43
44
    """

Yannick Roehlly's avatar
Yannick Roehlly committed
45
46
47
48
49
50
51
52
53
54
55
56
    def __init__(self, sfh=None):
        """Create a new SED

        Parameters
        ----------
        sfh : (numpy.array, numpy.array)
            Star Formation History: tuple of two numpy array, the first is the
            time in Myr and the second is the Star Formation Rate in Msun/yr.
            If no SFH is given, it's set to None.

        """
        self.sfh = sfh
Yannick Roehlly's avatar
Yannick Roehlly committed
57
58
59
        self.modules = []
        self.wavelength_grid = None
        self.contribution_names = []
Yannick Roehlly's avatar
Yannick Roehlly committed
60
        self.luminosities = None
Yannick Roehlly's avatar
Yannick Roehlly committed
61
        self.info = {}
62
        self.mass_proportional_info = []
Yannick Roehlly's avatar
Yannick Roehlly committed
63

Yannick Roehlly's avatar
Yannick Roehlly committed
64
65
66
67
68
69
70
71
72
73
74
75
76
    @property
    def sfh(self):
        """Return a copy of the star formation history
        """
        if self._sfh is None:
            return None
        else:
            return np.copy(self._sfh)

    @sfh.setter
    def sfh(self, value):
        self._sfh = value

Yannick Roehlly's avatar
Yannick Roehlly committed
77
78
    @property
    def wavelength_grid(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
79
        """ Return a copy of the wavelength grid
Yannick Roehlly's avatar
Yannick Roehlly committed
80
81
82
83
84
85
86
87
88
89
90
        """
        if self._wavelength_grid is None:
            return None
        else:
            return np.copy(self._wavelength_grid)

    @wavelength_grid.setter
    def wavelength_grid(self, value):
        self._wavelength_grid = value

    @property
Yannick Roehlly's avatar
Yannick Roehlly committed
91
92
    def luminosities(self):
        """ Return a copy of the luminosity contributions
Yannick Roehlly's avatar
Yannick Roehlly committed
93
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
94
        if self._luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
95
96
            return None
        else:
Yannick Roehlly's avatar
Yannick Roehlly committed
97
            return np.copy(self._luminosities)
Yannick Roehlly's avatar
Yannick Roehlly committed
98

Yannick Roehlly's avatar
Yannick Roehlly committed
99
100
101
    @luminosities.setter
    def luminosities(self, value):
        self._luminosities = value
Yannick Roehlly's avatar
Yannick Roehlly committed
102
103
104

    @property
    def luminosity(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
105
106
        """Total luminosity of the SED

Yannick Roehlly's avatar
Yannick Roehlly committed
107
108
109
        Return the total luminosity density vector, i.e. the sum of all the
        contributions in W/nm.
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
110
111
112
113
        if self._luminosities is None:
            return None
        else:
            return self._luminosities.sum(0)
Yannick Roehlly's avatar
Yannick Roehlly committed
114

115
    def lambda_fnu(self, redshift=0, redshift_spectrum=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
116
117
118
119
        """
        Return the (redshifted if asked) total Fν flux density vs wavelength
        spectrum of the SED.

Yannick Roehlly's avatar
Yannick Roehlly committed
120
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
121
122
123
        ----------
        redshift : float, default = 0
            If 0 (the default), the flux at 10 pc is computed.
124
125
126
127
        redshift_spectrum : boolean, default = None
            If true, the spectrum will be redshifted before computing the
            flux. The default is False because we generally use a specific
            module to apply the redshift.
Yannick Roehlly's avatar
Yannick Roehlly committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

        Returns
        -------
        wavelength, f_nu : tuple of array of floats
            The wavelength is in nm and the Fν is in mJy.

        """
        # Fλ flux density in W/m²/nm
        f_lambda = utils.luminosity_to_flux(self.luminosity, redshift)

        # The 1.e29 factor is to convert from W/m²/Hz to mJy
        f_nu = (f_lambda * self.wavelength_grid
                * 1.e-9 * self.wavelength_grid / c
                * 1.e29)

143
144
145
146
147
        if redshift_spectrum:
            wavelength = utils.redshift_wavelength(self.wavelength_grid,
                                                   redshift)
        else:
            wavelength = np.copy(self.wavelength_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
148
149
150

        return wavelength, f_nu

151
    def add_info(self, key, value, mass_proportional=False, force=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
152
153
154
        """
        Add a key / value to the information dictionary

Yannick Roehlly's avatar
Yannick Roehlly committed
155
        If the key is present in the dictionary, it will raise an exception.
Yannick Roehlly's avatar
Yannick Roehlly committed
156
157
158
        Use this method (instead of direct value assignment ) to avoid
        overriding a yet present information.

Yannick Roehlly's avatar
Yannick Roehlly committed
159
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
160
161
162
163
164
        ----------
        key : any immutable
           The key used to retrieve the information.
        value : anything
           The information.
165
166
167
        mass_proportional : boolean
           If True, the added variable is set as proportional to the
           mass.
168
169
170
171
        force : boolean
           If false (default), adding a key that yet exists in the info
           dictionary will raise an error. If true, doing this will update
           the associated value.
Yannick Roehlly's avatar
Yannick Roehlly committed
172
173

        """
174
        if (key not in self.info) or force:
Yannick Roehlly's avatar
Yannick Roehlly committed
175
            self.info[key] = value
176
177
            if mass_proportional:
                self.mass_proportional_info.append(key)
Yannick Roehlly's avatar
Yannick Roehlly committed
178
179
180
181
        else:
            raise KeyError("The information %s is yet present "
                           "in the SED. " % key)

182
183
184
    def add_module(self, module_name, module_conf):
        """Add a new module information to the SED.

Yannick Roehlly's avatar
Yannick Roehlly committed
185
        Parameters
186
187
188
189
190
        ----------
        module_name : string
            Name of the module. This name can be suffixed with anything
            using a dot.
        module_conf : dictionary
Yannick Roehlly's avatar
Yannick Roehlly committed
191
            Dictionary containing the module parameters.
192

Yannick Roehlly's avatar
Yannick Roehlly committed
193
        TODO: Complete the parameter dictionary with the default values from
194
195
              the module if they are not present.

Yannick Roehlly's avatar
Yannick Roehlly committed
196
        """
197
        self.modules.append((module_name, module_conf))
Yannick Roehlly's avatar
Yannick Roehlly committed
198

199
200
201
202
    def add_contribution(self, contribution_name, results_wavelengths,
                         results_lumin):
        """
        Add a new luminosity contribution to the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
203
204
205
206
207
208
209
210

        The luminosity contribution of the module is added to the contribution
        table doing an interpolation between the current wavelength grid and
        the grid of the module contribution. During the interpolation,
        everything that is outside of the concerned wavelength domain has its
        luminosity set to 0. Also, the name of the contribution is added to
        the contribution names array.

Yannick Roehlly's avatar
Yannick Roehlly committed
211
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        ----------
        contribution_name : string
            Name of the contribution added. This name is used to retrieve the
            luminosity contribution and allows one module to add more than
            one contribution.

        results_wavelengths : array of floats
            The vector of the wavelengths of the module results (in nm).

        results_lumin : array of floats
            The vector of the Lλ luminosities (in W/nm) of the module results.

        """
        self.contribution_names.append(contribution_name)

        # If the SED luminosity table is empty, then there is nothing to
        # compute.
Yannick Roehlly's avatar
Yannick Roehlly committed
229
        if self.luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
230
            self.wavelength_grid = np.copy(results_wavelengths)
Yannick Roehlly's avatar
Yannick Roehlly committed
231
            self.luminosities = np.copy(results_lumin)
Yannick Roehlly's avatar
Yannick Roehlly committed
232
233
234
235
236
237
238
        else:
            # Compute the new wavelength grid for the spectrum.
            new_wavelength_grid = utils.best_grid(results_wavelengths,
                                                  self.wavelength_grid)

            # Interpolate each luminosity component to the new wavelength grid
            # setting everything outside the wavelength domain to 0.
Yannick Roehlly's avatar
Yannick Roehlly committed
239
240
241
242
243
244
245
            new_luminosities = interp1d(self.wavelength_grid,
                                        self.luminosities,
                                        bounds_error=False,
                                        fill_value=0.)(new_wavelength_grid)

            # Interpolate the added luminosity array to the new wavelength
            # grid
Yannick Roehlly's avatar
Yannick Roehlly committed
246
247
248
249
250
251
252
253
            interp_lumin = np.interp(
                new_wavelength_grid,
                results_wavelengths,
                results_lumin,
                right=0,
                left=0)

            self.wavelength_grid = new_wavelength_grid
Yannick Roehlly's avatar
Yannick Roehlly committed
254
            self.luminosities = np.vstack((new_luminosities, interp_lumin))
Yannick Roehlly's avatar
Yannick Roehlly committed
255
256
257
258
259
260
261

    def get_lumin_contribution(self, name):
        """Get the luminosity vector of a given contribution

        If the name of the contribution is not unique in the SED, the flux of
        the last one is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
262
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        ----------
        name : string
            Name of the contribution

        Returns
        -------
        luminosities : array of floats
            Vector of the luminosity density contribution based on the SED
            wavelength grid.

        """
        # Find the index of the _last_ name element
        idx = (len(self.contribution_names) - 1
               - self.contribution_names[::-1].index(name))
Yannick Roehlly's avatar
Yannick Roehlly committed
277
        return self.luminosities[idx]
Yannick Roehlly's avatar
Yannick Roehlly committed
278

279
280
    def compute_fnu(self, transmission, lambda_eff,
                    redshift=0, redshift_spectrum=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        """
        Compute the Fν flux density corresponding the filter which
        transmission is given.

        As the SED stores the Lλ luminosity density, we first compute the Fλ
        flux density. Fλ is the integration of the Lλ luminosity multiplied by
        the filter transmission, normalised to this transmission and corrected
        by the luminosity distance of the source. This is done by the
        pcigale.sed.utils.luminosity_to_flux function.

        Fλ = luminosity_to_flux( integ( LλT(λ)dλ ) / integ( T(λ)dλ ) )

        Fλ is in W/m²/nm. At redshift 0, the flux is computed at 10 pc. Then,
        to compute Fν, we make the approximation:

        Fν = λeff / c . λeff . Fλ

        Fν is computed in W/m²/Hz and then converted to mJy.

        If the SED spectrum does not cover all the filter response table,
        -99 is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
303
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
304
305
306
307
308
309
310
311
312
313
314
        ----------
        transmission : 2D array of floats
            A numpy 2D array containing the filter response profile
            wavelength[nm] vs transmission).

        lambda_eff : float
            Effective wavelength of the filter in nm.

        redshift : float
            The redshift of the galaxy. If 0, the flux is computed at 10 pc.

315
316
317
318
319
        redshift_spectrum : boolean
            If true, the spectrum will be redshifted before computing the
            flux. The default is False because we generally use a specific
            module to apply the redshift.

Yannick Roehlly's avatar
Yannick Roehlly committed
320
321
322
323
324
325
326
327
328
        Return
        ------
        fnu : float
            The integrated Fν density in mJy.
        """

        lambda_min = min(transmission[0])
        lambda_max = max(transmission[0])

Yannick Roehlly's avatar
Yannick Roehlly committed
329
        # FIXME Shouldn't it be the reverse
Yannick Roehlly's avatar
Yannick Roehlly committed
330
331
332
333
334
        if ((min(self.wavelength_grid) > lambda_min) or
                (max(self.wavelength_grid) < lambda_max)):
            f_nu = -99.

        else:
335
336
337
338
339
340
            if redshift_spectrum:
                wavelength = utils.redshift_wavelength(self.wavelength_grid,
                                                       redshift)
            else:
                wavelength = np.copy(self.wavelength_grid)

Yannick Roehlly's avatar
Yannick Roehlly committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            l_lambda = self.luminosity

            # We regrid both spectrum and filter to the best wavelength grid
            # to avoid interpolating a high wavelength density curve to a low
            # density one. Also, we limit the work wavelength domain to the
            # filter one, taking care the presence of λmin and λman in the
            # used wavelength grid.
            wavelength_r = utils.best_grid(wavelength, transmission[0])
            if lambda_min not in wavelength_r:
                wavelength_r.append(lambda_min)
            if lambda_max not in wavelength_r:
                wavelength_r.append(lambda_max)
            wavelength_r.sort()
            wavelength_r = wavelength_r[wavelength_r <= lambda_max]
            wavelength_r = wavelength_r[wavelength_r >= lambda_min]

            l_lambda_r = np.interp(wavelength_r, wavelength, l_lambda)
            transmission_r = np.interp(wavelength_r, transmission[0],
                                       transmission[1])

            # TODO: Can we avoid to normalise as the filter transmission is
            # yet normalised?
            f_lambda = utils.luminosity_to_flux(
                (np.trapz(transmission_r * l_lambda_r, wavelength_r) /
                 np.trapz(transmission_r, wavelength_r)),
                redshift
            )

            # Fν in W/m²/Hz. The 1.e-9 factor is because λ is in nm.
            f_nu = lambda_eff * f_lambda * lambda_eff * 1.e-9 / c

            # Conversion from W/m²/Hz to mJy
            f_nu *= 1.e+29

        return f_nu