__init__.py 13.8 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2
3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Author: Yannick Roehlly
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7
8
This class represents a Spectral Energy Distribution (SED) as used by pcigale.
Such SED is characterised by:
Yannick Roehlly's avatar
Yannick Roehlly committed
9

Yannick Roehlly's avatar
Yannick Roehlly committed
10
11
- sfh: a tuple (time [Myr], Star Formation Rate [Msun/yr]) representing the
  Star Formation History of the galaxy.
Yannick Roehlly's avatar
Yannick Roehlly committed
12

Yannick Roehlly's avatar
Yannick Roehlly committed
13
14
- modules: a list of tuples (module name, parameter dictionary) containing all
  the pcigale modules the SED 'went through'.
Yannick Roehlly's avatar
Yannick Roehlly committed
15

Yannick Roehlly's avatar
Yannick Roehlly committed
16
- wavelength_grid: the grid of wavelengths [nm] used for the luminosities.
Yannick Roehlly's avatar
Yannick Roehlly committed
17

Yannick Roehlly's avatar
Yannick Roehlly committed
18
19
- contribution_names: the list of the names of the luminosity contributions
  making part of the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
20

Yannick Roehlly's avatar
Yannick Roehlly committed
21
22
23
24
- luminosities: a two axis numpy array containing all the luminosity density
  [W/nm] contributions to the SED. The index in the first axis corresponds to
  the contribution (in the contribution_names list) and the index of the
  second axis corresponds to the wavelength in the wavelength grid.
Yannick Roehlly's avatar
Yannick Roehlly committed
25

Yannick Roehlly's avatar
Yannick Roehlly committed
26
27
- lines: a dictionary containing the emission lines associated with the SED.
  A dictionary is used to allow the storage of various sets of lines. The
28
29
30
  lines are stored in a three axis numpy array: axis 0 is the central
  wavelength [nm], axis 1 is the line luminosity [W] and axis 2 is the line
  width [km.s-1].
31

Yannick Roehlly's avatar
Yannick Roehlly committed
32
- info: a dictionary containing various information about the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
33

Yannick Roehlly's avatar
Yannick Roehlly committed
34
- mass_proportional_info: the list of keys in the info dictionary whose value
Yannick Roehlly's avatar
Yannick Roehlly committed
35
  is proportional to the galaxy mass.
Yannick Roehlly's avatar
Yannick Roehlly committed
36

Yannick Roehlly's avatar
Yannick Roehlly committed
37
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
38

Yannick Roehlly's avatar
Yannick Roehlly committed
39
import numpy as np
40
from collections import OrderedDict
Yannick Roehlly's avatar
Yannick Roehlly committed
41
42
43
from . import utils
from scipy.constants import c
from scipy.interpolate import interp1d
Yannick Roehlly's avatar
Yannick Roehlly committed
44

45
46
47
48
49
# Time lapse used to compute the average star formation rate. We use a
# constant to keep it easily changeable for advanced user while limiting the
# number of parameters. The value is in Myr.
AV_LAPSE = 100

50

Yannick Roehlly's avatar
Yannick Roehlly committed
51
52
class SED(object):
    """Spectral Energy Distribution with associated information
Yannick Roehlly's avatar
Yannick Roehlly committed
53
54
    """

Yannick Roehlly's avatar
Yannick Roehlly committed
55
56
57
58
59
60
61
62
63
64
65
66
    def __init__(self, sfh=None):
        """Create a new SED

        Parameters
        ----------
        sfh : (numpy.array, numpy.array)
            Star Formation History: tuple of two numpy array, the first is the
            time in Myr and the second is the Star Formation Rate in Msun/yr.
            If no SFH is given, it's set to None.

        """
        self.sfh = sfh
67
        self.redshift = 0.
Yannick Roehlly's avatar
Yannick Roehlly committed
68
69
70
        self.modules = []
        self.wavelength_grid = None
        self.contribution_names = []
Yannick Roehlly's avatar
Yannick Roehlly committed
71
        self.luminosities = None
72
        self.lines = {}
73
        self.info = OrderedDict()
74
        self.mass_proportional_info = []
Yannick Roehlly's avatar
Yannick Roehlly committed
75

Yannick Roehlly's avatar
Yannick Roehlly committed
76
77
78
79
80
81
82
83
84
85
86
87
88
    @property
    def sfh(self):
        """Return a copy of the star formation history
        """
        if self._sfh is None:
            return None
        else:
            return np.copy(self._sfh)

    @sfh.setter
    def sfh(self, value):
        self._sfh = value

89
90
91
92
93
94
95
        if value:
            sfh_time, sfh_sfr = value
            sfh_age = np.max(sfh_time) - sfh_time
            self._sfh = value
            self.add_info("sfr", sfh_sfr[-1], True, True)
            self.add_info("average_sfr", np.mean(sfh_sfr[sfh_age <= AV_LAPSE]),
                          True, True)
96
            self.add_info("age", np.max(sfh_time), False, True)
97

Yannick Roehlly's avatar
Yannick Roehlly committed
98
99
    @property
    def wavelength_grid(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
100
        """ Return a copy of the wavelength grid
Yannick Roehlly's avatar
Yannick Roehlly committed
101
102
103
104
105
106
107
108
109
110
111
        """
        if self._wavelength_grid is None:
            return None
        else:
            return np.copy(self._wavelength_grid)

    @wavelength_grid.setter
    def wavelength_grid(self, value):
        self._wavelength_grid = value

    @property
Yannick Roehlly's avatar
Yannick Roehlly committed
112
113
    def luminosities(self):
        """ Return a copy of the luminosity contributions
Yannick Roehlly's avatar
Yannick Roehlly committed
114
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
115
        if self._luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
116
117
            return None
        else:
Yannick Roehlly's avatar
Yannick Roehlly committed
118
            return np.copy(self._luminosities)
Yannick Roehlly's avatar
Yannick Roehlly committed
119

Yannick Roehlly's avatar
Yannick Roehlly committed
120
121
122
    @luminosities.setter
    def luminosities(self, value):
        self._luminosities = value
Yannick Roehlly's avatar
Yannick Roehlly committed
123
124
125

    @property
    def luminosity(self):
Yannick Roehlly's avatar
Yannick Roehlly committed
126
127
        """Total luminosity of the SED

Yannick Roehlly's avatar
Yannick Roehlly committed
128
129
130
        Return the total luminosity density vector, i.e. the sum of all the
        contributions in W/nm.
        """
Yannick Roehlly's avatar
Yannick Roehlly committed
131
132
133
134
        if self._luminosities is None:
            return None
        else:
            return self._luminosities.sum(0)
Yannick Roehlly's avatar
Yannick Roehlly committed
135

136
137
138
    @property
    def fnu(self):
        """Total Fν flux density of the SED
Yannick Roehlly's avatar
Yannick Roehlly committed
139

140
141
        Return the total Fν density vector, i.e the total luminosity converted
        to Fν flux in mJy.
Yannick Roehlly's avatar
Yannick Roehlly committed
142
143
        """

Yannick Roehlly's avatar
Yannick Roehlly committed
144
        # Fλ flux density in W/m²/nm
145
        f_lambda = utils.luminosity_to_flux(self.luminosity, self.redshift)
Yannick Roehlly's avatar
Yannick Roehlly committed
146

147
148
        # Fν flux density in mJy
        f_nu = utils.lambda_flambda_to_fnu(self.wavelength_grid, f_lambda)
Yannick Roehlly's avatar
Yannick Roehlly committed
149

150
        return f_nu
Yannick Roehlly's avatar
Yannick Roehlly committed
151

152
    def add_info(self, key, value, mass_proportional=False, force=False):
Yannick Roehlly's avatar
Yannick Roehlly committed
153
154
155
        """
        Add a key / value to the information dictionary

Yannick Roehlly's avatar
Yannick Roehlly committed
156
        If the key is present in the dictionary, it will raise an exception.
Yannick Roehlly's avatar
Yannick Roehlly committed
157
        Use this method (instead of direct value assignment ) to avoid
158
        overriding an already present information.
Yannick Roehlly's avatar
Yannick Roehlly committed
159

Yannick Roehlly's avatar
Yannick Roehlly committed
160
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
161
162
163
164
165
        ----------
        key : any immutable
           The key used to retrieve the information.
        value : anything
           The information.
166
167
168
        mass_proportional : boolean
           If True, the added variable is set as proportional to the
           mass.
169
        force : boolean
170
           If false (default), adding a key that already exists in the info
171
172
           dictionary will raise an error. If true, doing this will update
           the associated value.
Yannick Roehlly's avatar
Yannick Roehlly committed
173
174

        """
175
        if (key not in self.info) or force:
Yannick Roehlly's avatar
Yannick Roehlly committed
176
            self.info[key] = value
177
178
            if mass_proportional:
                self.mass_proportional_info.append(key)
Yannick Roehlly's avatar
Yannick Roehlly committed
179
        else:
180
            raise KeyError("The information %s is already present "
Yannick Roehlly's avatar
Yannick Roehlly committed
181
182
                           "in the SED. " % key)

183
184
185
    def add_module(self, module_name, module_conf):
        """Add a new module information to the SED.

Yannick Roehlly's avatar
Yannick Roehlly committed
186
        Parameters
187
188
189
190
191
        ----------
        module_name : string
            Name of the module. This name can be suffixed with anything
            using a dot.
        module_conf : dictionary
Yannick Roehlly's avatar
Yannick Roehlly committed
192
            Dictionary containing the module parameters.
193

Yannick Roehlly's avatar
Yannick Roehlly committed
194
        TODO: Complete the parameter dictionary with the default values from
195
196
              the module if they are not present.

Yannick Roehlly's avatar
Yannick Roehlly committed
197
        """
198
        self.modules.append((module_name, module_conf))
Yannick Roehlly's avatar
Yannick Roehlly committed
199

200
201
202
203
    def add_contribution(self, contribution_name, results_wavelengths,
                         results_lumin):
        """
        Add a new luminosity contribution to the SED.
Yannick Roehlly's avatar
Yannick Roehlly committed
204
205
206
207
208
209
210
211

        The luminosity contribution of the module is added to the contribution
        table doing an interpolation between the current wavelength grid and
        the grid of the module contribution. During the interpolation,
        everything that is outside of the concerned wavelength domain has its
        luminosity set to 0. Also, the name of the contribution is added to
        the contribution names array.

Yannick Roehlly's avatar
Yannick Roehlly committed
212
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        ----------
        contribution_name : string
            Name of the contribution added. This name is used to retrieve the
            luminosity contribution and allows one module to add more than
            one contribution.

        results_wavelengths : array of floats
            The vector of the wavelengths of the module results (in nm).

        results_lumin : array of floats
            The vector of the Lλ luminosities (in W/nm) of the module results.

        """
        self.contribution_names.append(contribution_name)

        # If the SED luminosity table is empty, then there is nothing to
        # compute.
Yannick Roehlly's avatar
Yannick Roehlly committed
230
        if self.luminosities is None:
Yannick Roehlly's avatar
Yannick Roehlly committed
231
            self.wavelength_grid = np.copy(results_wavelengths)
Yannick Roehlly's avatar
Yannick Roehlly committed
232
            self.luminosities = np.copy(results_lumin)
Yannick Roehlly's avatar
Yannick Roehlly committed
233
234
235
236
237
238
239
        else:
            # Compute the new wavelength grid for the spectrum.
            new_wavelength_grid = utils.best_grid(results_wavelengths,
                                                  self.wavelength_grid)

            # Interpolate each luminosity component to the new wavelength grid
            # setting everything outside the wavelength domain to 0.
Yannick Roehlly's avatar
Yannick Roehlly committed
240
241
242
243
244
245
246
            new_luminosities = interp1d(self.wavelength_grid,
                                        self.luminosities,
                                        bounds_error=False,
                                        fill_value=0.)(new_wavelength_grid)

            # Interpolate the added luminosity array to the new wavelength
            # grid
247
248
249
250
            interp_lumin = interp1d(results_wavelengths,
                                    results_lumin,
                                    bounds_error=False,
                                    fill_value=0)(new_wavelength_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
251
252

            self.wavelength_grid = new_wavelength_grid
Yannick Roehlly's avatar
Yannick Roehlly committed
253
            self.luminosities = np.vstack((new_luminosities, interp_lumin))
Yannick Roehlly's avatar
Yannick Roehlly committed
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def add_lines(self, set_name, wavelengths, luminosities, widths):
        """Add a set of spectral lines to the SED.

        Parameters
        ----------
        set_name : string
            Name of the set of lines.
        wavelengths : list-like of floats
            The central wavelengths of the lines in nm.
        luminosities : list-like of floats
            The total luminosity in the spectral lines in W.
        widths : list-like of floats
            The widths of the lines in km.s-1.

        """
        wavelengths = np.array(wavelengths, dtype=float)
        luminosities = np.array(luminosities, dtype=float)
        widths = np.array(widths, dtype=float)

        if set_name in self.lines:
            raise KeyError("The line set {} is all ready present in the "
                           "SED.".format(set_name))
        else:
            self.lines[set_name] = np.vstack(
                (wavelengths, luminosities, widths))

Yannick Roehlly's avatar
Yannick Roehlly committed
281
282
283
284
285
286
    def get_lumin_contribution(self, name):
        """Get the luminosity vector of a given contribution

        If the name of the contribution is not unique in the SED, the flux of
        the last one is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
287
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        ----------
        name : string
            Name of the contribution

        Returns
        -------
        luminosities : array of floats
            Vector of the luminosity density contribution based on the SED
            wavelength grid.

        """
        # Find the index of the _last_ name element
        idx = (len(self.contribution_names) - 1
               - self.contribution_names[::-1].index(name))
Yannick Roehlly's avatar
Yannick Roehlly committed
302
        return self.luminosities[idx]
Yannick Roehlly's avatar
Yannick Roehlly committed
303

304
    def compute_fnu(self, transmission, lambda_eff,
305
                    add_line_fluxes=True):
Yannick Roehlly's avatar
Yannick Roehlly committed
306
307
308
309
310
311
312
313
314
315
316
317
        """
        Compute the Fν flux density corresponding the filter which
        transmission is given.

        As the SED stores the Lλ luminosity density, we first compute the Fλ
        flux density. Fλ is the integration of the Lλ luminosity multiplied by
        the filter transmission, normalised to this transmission and corrected
        by the luminosity distance of the source. This is done by the
        pcigale.sed.utils.luminosity_to_flux function.

        Fλ = luminosity_to_flux( integ( LλT(λ)dλ ) / integ( T(λ)dλ ) )

Yannick Roehlly's avatar
Yannick Roehlly committed
318
        Fλ is in W/m²/nm. At redshift 0, the flux is computed at 10 pc. Then,
Yannick Roehlly's avatar
Yannick Roehlly committed
319
320
321
322
323
324
325
326
327
        to compute Fν, we make the approximation:

        Fν = λeff / c . λeff . Fλ

        Fν is computed in W/m²/Hz and then converted to mJy.

        If the SED spectrum does not cover all the filter response table,
        -99 is returned.

Yannick Roehlly's avatar
Yannick Roehlly committed
328
        Parameters
Yannick Roehlly's avatar
Yannick Roehlly committed
329
330
331
332
333
334
335
336
        ----------
        transmission : 2D array of floats
            A numpy 2D array containing the filter response profile
            wavelength[nm] vs transmission).

        lambda_eff : float
            Effective wavelength of the filter in nm.

337
338
339
340
        add_line_flux : boolean
            If true (default), the flux coming from the spectral lines will be
            taken into account.

Yannick Roehlly's avatar
Yannick Roehlly committed
341
342
343
344
345
346
        Return
        ------
        fnu : float
            The integrated Fν density in mJy.
        """

347
        # Filter limits
348
349
        lambda_min = np.min(transmission[0])
        lambda_max = np.max(transmission[0])
Yannick Roehlly's avatar
Yannick Roehlly committed
350

351
352
353
354
        wavelength = self.wavelength_grid
        l_lambda = self.luminosity

        # Test if the spectrum cover all the filter extend
355
356
        if ((np.min(self.wavelength_grid) > lambda_min) or
                (np.max(self.wavelength_grid) < lambda_max)):
Yannick Roehlly's avatar
Yannick Roehlly committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            f_nu = -99.

        else:
            # We regrid both spectrum and filter to the best wavelength grid
            # to avoid interpolating a high wavelength density curve to a low
            # density one. Also, we limit the work wavelength domain to the
            # filter one, taking care the presence of λmin and λman in the
            # used wavelength grid.
            wavelength_r = utils.best_grid(wavelength, transmission[0])
            if lambda_min not in wavelength_r:
                wavelength_r.append(lambda_min)
            if lambda_max not in wavelength_r:
                wavelength_r.append(lambda_max)
            wavelength_r.sort()
            wavelength_r = wavelength_r[wavelength_r <= lambda_max]
            wavelength_r = wavelength_r[wavelength_r >= lambda_min]

            l_lambda_r = np.interp(wavelength_r, wavelength, l_lambda)
            transmission_r = np.interp(wavelength_r, transmission[0],
                                       transmission[1])

            # TODO: Can we avoid to normalise as the filter transmission is
379
            # already normalised?
Yannick Roehlly's avatar
Yannick Roehlly committed
380
381
382
            f_lambda = utils.luminosity_to_flux(
                (np.trapz(transmission_r * l_lambda_r, wavelength_r) /
                 np.trapz(transmission_r, wavelength_r)),
383
                self.redshift
Yannick Roehlly's avatar
Yannick Roehlly committed
384
385
            )

386
            # Add the Fλ fluxes from the spectral lines.
387
            # TODO write the code
388

Yannick Roehlly's avatar
Yannick Roehlly committed
389
390
391
392
393
394
395
            # Fν in W/m²/Hz. The 1.e-9 factor is because λ is in nm.
            f_nu = lambda_eff * f_lambda * lambda_eff * 1.e-9 / c

            # Conversion from W/m²/Hz to mJy
            f_nu *= 1.e+29

        return f_nu