__init__.py 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# -*- coding: utf-8 -*-
# Copyright (C) 2013 Centre de données Astrophysiques de Marseille
# Copyright (C) 2013-2014 Yannick Roehlly
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
# Author: Yannick Roehlly

"""
Probability Density Function analysis module
============================================

This module builds the probability density functions (PDF) of the SED
parameters to compute their moments.

The models corresponding to all possible combinations of parameters are
computed and their fluxes in the same filters as the observations are
integrated. These fluxes are compared to the observed ones to compute the
χ² value of the fitting. This χ² give a probability that is associated with
the model values for the parameters.

At the end, for each parameter, the probability-weighted mean and standard
deviation are computed and the best fitting model (the one with the least
reduced χ²) is given for each observation.

"""

import os
import numpy as np
28
import matplotlib
29 30 31 32
from numpy import newaxis
from collections import OrderedDict
from datetime import datetime
from progressbar import ProgressBar
33
from matplotlib import pyplot as plt
34 35 36
from astropy.table import Table, Column
from ...utils import read_table
from .. import AnalysisModule, complete_obs_table
37
from .utils import gen_pdf, gen_best_sed_fig
38 39 40 41
from ...warehouse import SedWarehouse
from ...data import Database

# Tolerance threshold under which any flux or error is considered as 0.
42
TOLERANCE = 1e-12
43 44
# Probability threshold: models with a lower probability are excluded from
# the moments computation.
45
MIN_PROBABILITY = 1e-20
46
# Limit the redshift to this number of decimals
47
REDSHIFT_DECIMALS = 2
48 49 50 51 52 53 54 55 56
# Name of the file containing the analysis results
RESULT_FILE = "analysis_results.fits"
# Name of the file containing the best models information
BEST_MODEL_FILE = "best_models.fits"
# Directory where the output files are stored
OUT_DIR = "out/"
# Wavelength limits (restframe) when plotting the best SED.
PLOT_L_MIN = 91
PLOT_L_MAX = 1e6
57 58
# Number of points in the PDF
PDF_NB_POINTS = 1000
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


class PdfAnalysis(AnalysisModule):
    """PDF analysis module"""

    parameter_list = OrderedDict([
        ("analysed_variables", (
            "array of strings",
            "List of the variables (in the SEDs info dictionaries) for which "
            "the statistical analysis will be done.",
            ["sfr", "average_sfr"]
        )),
        ("save_best_sed", (
            "boolean",
            "If true, save the best SED for each observation to a file.",
            False
        )),
        ("plot_best_sed", (
            "boolean",
            "If true, for each observation save a plot of the best SED "
            "and the observed fluxes.",
            False
        )),
        ("plot_chi2_distribution", (
            "boolean",
            "If true, for each observation and each analysed variable "
            "plot the value vs reduced chi-square distribution.",
            False
        )),
        ("save_pdf", (
            "boolean",
            "If true, for each observation and each analysed variable "
            "save the probability density function.",
            False
        )),
        ("plot_pdf", (
            "boolean",
            "If true, for each observation and each analysed variable "
            "plot the probability density function.",
            False
        )),
        ("storage_type", (
            "string",
            "Type of storage used to cache the generate SED.",
            "memory"
        ))
    ])

    def process(self, data_file, column_list, creation_modules,
                creation_modules_params, parameters):
        """Process with the psum analysis.

        The analysis is done in two nested loops: over each observation and
        over each theoretical SEDs. We first loop over the SEDs to limit the
        number of time the SEDs are created.

        Parameters
        ----------
        data_file: string
            Name of the file containing the observations to fit.
        column_list: list of strings
            Name of the columns from the data file to use for the analysis.
        creation_modules: list of strings
            List of the module names (in the right order) to use for creating
            the SEDs.
        creation_modules_params: list of dictionaries
            List of the parameter dictionaries for each module.
        parameters: dictionary
            Dictionary containing the parameters.

        """

131 132 133
        # To be sure matplotlib will not display the interactive window.
        matplotlib.interactive(0)

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        # Rename the output directory if it exists
        if os.path.exists(OUT_DIR):
            new_name = datetime.now().strftime("%Y%m%d%H%M") + "_" + OUT_DIR
            os.rename(OUT_DIR, new_name)
            print("The existing {} directory was renamed to {}".format(
                OUT_DIR,
                new_name
            ))
        os.mkdir(OUT_DIR)

        # Get the parameters
        analysed_variables = parameters["analysed_variables"]
        save_best_sed = (parameters["save_best_sed"].lower() == "true")
        plot_best_sed = (parameters["plot_best_sed"].lower() == "true")
        plot_chi2_distribution = (
            parameters["plot_chi2_distribution"].lower() == "true")
        save_pdf = (parameters["save_pdf"].lower() == "true")
        plot_pdf = (parameters["plot_pdf"].lower() == "true")

        # Get the needed filters in the pcigale database. We use an ordered
        # dictionary because we need the keys to always be returned in the
        # same order.
        with Database() as base:
            filters = OrderedDict([(name, base.get_filter(name))
                                   for name in column_list
                                   if not name.endswith('_err')])

        # Read the observation table and complete it by adding error where
        # none is provided and by adding the systematic deviation.
        obs_table = complete_obs_table(
            read_table(data_file),
            column_list,
            filters,
            TOLERANCE
        )

        ##################################################################
        # Model computation                                              #
        ##################################################################

        print("Computing the models fluxes...")

        # First, we compute for all the possible theoretical models (one for
        # each parameter set in sed_module_parameters) the fluxes in all the
178
        # filters. These fluxes are stored in:
179 180 181

        # model_fluxes:
        # - axis 0: model index
182
        # - axis 1: filter index
183 184

        # We use a numpy masked array to mask the fluxes of models that would
185
        # be older than the age of the Universe at the considered redshift.
186 187 188 189 190 191 192

        # The values for the analysed variables are stored in:

        # model_variables:
        # - axis 0: the model index in sed_module_params
        # - axis 1: the variable index in analysed_variables

193 194 195
        # For convenience, the redshift of each model is stored in
        # model_redshift.

196
        model_fluxes = np.ma.empty((len(creation_modules_params),
197
                                    len(filters)))
198
        model_variables = np.ma.empty((len(creation_modules_params),
199 200
                                       len(analysed_variables)))

201 202
        model_redshift = np.empty(len(creation_modules_params))

203 204 205 206 207 208 209 210 211 212 213
        # We keep the information (i.e. the content of the sed.info
        # dictionary) for each model.
        model_info = []

        progress_bar = ProgressBar(maxval=len(creation_modules_params)).start()

        # The SED warehouse is used to retrieve SED corresponding to some
        # modules and parameters.
        with SedWarehouse(cache_type=parameters["storage_type"]) as \
                sed_warehouse:

214 215
            for model_index, model_params in enumerate(
                    creation_modules_params):
216

217
                sed = sed_warehouse.get_sed(creation_modules, model_params)
218

219 220 221 222 223
                model_fluxes[model_index, :] = np.array(
                    [sed.compute_fnu(filter_.trans_table,
                                     filter_.effective_wavelength)
                     for filter_ in filters.values()])
                model_variables[model_index, :] = np.array(
224 225 226
                    [sed.info[name] for name in analysed_variables]
                )

227 228
                model_redshift[model_index] = sed.info['redshift']

229 230 231 232
                model_info.append(sed.info.values())

                progress_bar.update(model_index + 1)

233 234
        unique_redshifts = np.unique(model_redshift)

235
        # Mask the invalid fluxes
236
        model_fluxes = np.ma.masked_less(model_fluxes, -90)
237 238 239 240 241 242 243 244 245

        progress_bar.finish()

        ##################################################################
        # Observations to models comparison                              #
        ##################################################################

        print("Comparing the observations to the models...")

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        # As we are looping over all the observations we store data for the
        # output tables in various arrays
        analysed_averages_all = np.empty((len(obs_table),
                                          len(analysed_variables)))
        analysed_std_all = np.empty_like(analysed_averages_all)

        best_idx_all = np.empty(len(obs_table))
        best_chi2_all = np.empty_like(best_idx_all)
        best_chi2_red_all = np.empty_like(best_idx_all)
        normalisation_factors_all = np.empty_like(best_idx_all)

        best_variables_all = [None]*len(obs_table)

        for idx_obs, obs in enumerate(obs_table):
            obs_fluxes = np.array([obs[name] for name in filters])
            obs_errors = np.array([obs[name + "_err"] for name in filters])

            # Some observations may not have flux value in some filters, in
            # that case the user is asked to put -9999 as value. We mask these
            # values. Note, we must mask obs_fluxes after obs_errors.
            obs_errors = np.ma.masked_where(obs_fluxes < -9990., obs_errors)
            obs_fluxes = np.ma.masked_less(obs_fluxes, -9990.)

            # We compute the χ² only for models with the closest redshift. We
            # extract model fluxes and information into arrays dedicated to a
            # given observation.
            closest_redshift = unique_redshifts[np.abs(obs["redshift"] -
                                                unique_redshifts).argmin()]
            w_models = model_redshift == closest_redshift
            model_fluxes_obs = model_fluxes[w_models, :]
            model_info_obs = np.array(model_info)[w_models]
            model_variables_obs = model_variables[w_models]

            # Normalisation factor to be applied to a model fluxes to best fit
            # an observation fluxes. Normalised flux of the models. χ² and
            # likelihood of the fitting. Reduced χ² (divided by the number of
            # filters to do the fit).
            normalisation_factors = (
                np.sum(
                    model_fluxes_obs * obs_fluxes / (
                        obs_errors * obs_errors), axis=1
                ) / np.sum(
                    model_fluxes_obs * model_fluxes_obs / (
                        obs_errors * obs_errors), axis=1)
            )
            norm_model_fluxes = (model_fluxes_obs *
                                 normalisation_factors[:, np.newaxis])

            # χ² of the comparison of each model to each observation.
            chi_squares = np.sum(
                np.square((obs_fluxes - norm_model_fluxes) / obs_errors),
                axis=1)

            # We define the reduced χ² as the χ² divided by the number of
            # fluxes used for the fitting.
            reduced_chi_squares = chi_squares / obs_fluxes.count()

            # We use the exponential probability associated with the χ² as
            # likelihood function.
            likelihood = np.exp(-chi_squares/2)
            # For the analysis, we consider that the computed models explain
            # each observation. We normalise the likelihood function to have a
            # total likelihood of 1 for each observation.
            likelihood /= np.sum(likelihood)
            # We don't want to take into account the models with a probability
            # less that the threshold.
            likelihood = np.ma.masked_less(likelihood, MIN_PROBABILITY)
            # We re-normalise the likelihood.
            likelihood /= np.sum(likelihood)

            # We take the mass-dependent variable list from the last computed
            # sed.
            for index, variable in enumerate(analysed_variables):
                if variable in sed.mass_proportional_info:
                    model_variables_obs[:, index] *= normalisation_factors

            # We also add the galaxy mass to the analysed variables if relevant
            if sed.sfh is not None:
                analysed_variables.insert(0, "galaxy_mass")
                model_variables_obs = np.dstack((normalisation_factors,
                                                 model_variables_obs))

            ##################################################################
            # Variable analysis                                              #
            ##################################################################

            print("Analysing the variables...")

            # We compute the weighted average and standard deviation using the
            # likelihood as weight. We first build the weight array by
            # expanding the likelihood along a new axis corresponding to the
            # analysed variable.
            weights = likelihood[:, newaxis].repeat(len(analysed_variables),
                                                    axis=1)

            # Analysed variables average and standard deviation arrays.
            analysed_averages = np.ma.average(model_variables_obs,
                                              axis=0, weights=weights)

            analysed_std = np.ma.sqrt(np.ma.average(
                (model_variables_obs - analysed_averages[newaxis, :])**2,
                axis=0, weights=weights))

            # We record the estimated averages and standard deviations to
            # save in a table later on when this has been computed for all
            # objects.
            analysed_averages_all[idx_obs, :] = analysed_averages
            analysed_std_all[idx_obs, :] = analysed_std

            ##################################################################
            # Best models                                                    #
            ##################################################################

            print("Analysing the best models...")

            # We define the best fitting model for each observation as the one
            # with the least χ².
            best_index = chi_squares.argmin()

            # We save the relevant data related to the model with the lowest
            # χ²
            best_idx_all[idx_obs] = best_index
            normalisation_factors_all[idx_obs] = \
                normalisation_factors[best_index]
            best_chi2_all[idx_obs] = chi_squares[best_index]
            best_chi2_red_all[idx_obs] = reduced_chi_squares[best_index]
            best_variables_all[idx_obs] = list(model_info_obs[best_index])

            if plot_best_sed or save_best_sed:

                print("Plotting/saving the best models...")

                with SedWarehouse(cache_type=parameters["storage_type"]) as \
                        sed_warehouse:
380 381 382

                    sed = sed_warehouse.get_sed(
                        creation_modules,
383
                        np.array(creation_modules_params)[w_models][best_index]
384 385 386
                    )

                    best_lambda = sed.wavelength_grid
387
                    best_fnu = sed.fnu * normalisation_factors[best_index]
388 389

                    if save_best_sed:
390
                        sed.to_votable(
391 392
                            OUT_DIR + "{}_best_model.xml".format(obs['id']),
                            mass=normalisation_factors[best_index]
393
                        )
394 395 396 397

                    if plot_best_sed:

                        plot_mask = (
398 399 400
                            (best_lambda >= PLOT_L_MIN * (1 + obs["redshift"]))
                            &
                            (best_lambda <= PLOT_L_MAX * (1 + obs["redshift"]))
401 402 403 404 405 406
                        )

                        figure = gen_best_sed_fig(
                            best_lambda[plot_mask],
                            best_fnu[plot_mask],
                            [f.effective_wavelength for f in filters.values()],
407 408
                            norm_model_fluxes[best_index, :],
                            [obs[f] for f in filters]
409 410 411 412
                        )

                        if figure is None:
                            print("Can not plot best model for observation "
413
                                  "{}!".format(obs['id']))
414 415 416
                        else:
                            figure.suptitle(
                                u"Best model for {} - red-chi² = {}".format(
417 418
                                    obs['id'],
                                    reduced_chi_squares[best_index]
419 420
                                )
                            )
421 422
                            figure.savefig(OUT_DIR + "{}_best_model.pdf".format
                                           (obs['id']))
423 424
                            plt.close(figure)

425 426 427
            ##################################################################
            # Probability Density Functions                                  #
            ##################################################################
428

429 430 431 432
            # We estimate the probability density functions (PDF) of the
            # parameters using a weighted kernel density estimation. This part
            # should definitely be improved as we simulate the weight by adding
            # as many value as their probability * 100.
433

434
            if save_pdf or plot_pdf:
435

436
                print("Computing the probability density functions...")
437

438
                for var_index, var_name in enumerate(analysed_variables):
439

440
                    values = model_variables_obs[:, var_index]
441

442 443
                    pdf_grid = np.linspace(values.min(), values.max(),
                                           PDF_NB_POINTS)
444
                    pdf_prob = gen_pdf(values, likelihood, pdf_grid)
445

446 447 448
                    if pdf_prob is None:
                        # TODO: use logging
                        print("Can not compute PDF for observation <{}> and "
449
                              "variable <{}>.".format(obs['id'], var_name))
450

451 452 453
                    if save_pdf and pdf_prob is not None:
                        table = Table((
                            Column(pdf_grid, name=var_name),
454
                            Column(pdf_prob, name="probability density")
455 456
                        ))
                        table.write(OUT_DIR + "{}_{}_pdf.fits".format(
457
                            obs['id'], var_name))
458

459 460 461 462 463
                    if plot_pdf and pdf_prob is not None:
                        figure = plt.figure()
                        ax = figure.add_subplot(111)
                        ax.plot(pdf_grid, pdf_prob)
                        ax.set_xlabel(var_name)
464
                        ax.set_ylabel("Probability density")
465
                        figure.savefig(OUT_DIR + "{}_{}_pdf.pdf".format(
466
                            obs['id'], var_name))
467
                        plt.close(figure)
468

469 470 471 472
            ##################################################################
            # Reduced-chisquares plots                                       #
            ##################################################################
            if plot_chi2_distribution:
473

474
                print("Plotting the reduced chi squares distributions...")
475 476 477

                for var_index, var_name in enumerate(analysed_variables):

478
                    values = model_variables_obs[:, var_index]
479 480 481

                    figure = plt.figure()
                    ax = figure.add_subplot(111)
482
                    ax.plot(values, reduced_chi_squares, "ob")
483 484 485
                    ax.set_xlabel(var_name)
                    ax.set_ylabel("reduced chi-square")
                    figure.suptitle("Reduced chi-square distribution of {} "
486 487
                                    "values for {}".format(obs['id'],
                                                           var_name))
488
                    figure.savefig(OUT_DIR + "{}_{}_chisquares.pdf".format(
489
                                   obs['id'], var_name))
490 491
                    plt.close(figure)

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        # Create and save the result table.
        result_table = Table()
        result_table.add_column(Column(
            obs_table["id"].data,
            name="observation_id"
        ))
        for index, variable in enumerate(analysed_variables):
            result_table.add_column(Column(
                analysed_averages_all[:, index],
                name=variable
            ))
            result_table.add_column(Column(
                analysed_std_all[:, index],
                name=variable+"_err"
            ))
        result_table.write(OUT_DIR + RESULT_FILE)

        best_model_table = Table()
        best_model_table.add_column(Column(
            obs_table["id"].data,
            name="observation_id"
        ))
        best_model_table.add_column(Column(
            best_chi2_all,
            name="chi_square"
        ))
        best_model_table.add_column(Column(
            best_chi2_red_all,
            name="reduced_chi_square"
        ))
        if sed.sfh is not None:
            best_model_table.add_column(Column(
                normalisation_factors_all,
                name="galaxy_mass",
                unit="Msun"
            ))

        for index, name in enumerate(sed.info.keys()):
            column = Column([best_variables[index]
                             for best_variables in best_variables_all],
                            name=name)
            if name in sed.mass_proportional_info:
                column *= normalisation_factors_all
            best_model_table.add_column(column)

        best_model_table.write(OUT_DIR + BEST_MODEL_FILE)

539

540 541
# AnalysisModule to be returned by get_module
Module = PdfAnalysis