__init__.py 25 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
23 24
                          Dale2014, DL2007, DL2014, NebularLines,
                          NebularContinuum)
Yannick Roehlly's avatar
Yannick Roehlly committed
25 26


27 28 29 30 31
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
32
    separated by a space (or a carriage return). There are the time vector, 5
33 34 35 36 37 38 39 40 41 42 43 44
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
45
              Vector of the time grid of the SSP in Myr.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
73
    what_line = next(file_structure)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
116
                what_line = next(file_structure)
117

Yannick Roehlly's avatar
Yannick Roehlly committed
118
    # The time grid is in year, we want Myr.
119
    time_grid = np.array(time_grid, dtype=float)
Yannick Roehlly's avatar
Yannick Roehlly committed
120
    time_grid = time_grid * 1.e-6
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
    wavelength = wavelength * 0.1

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
    luminosity = luminosity * 3.826e27
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


139 140
def build_filters(base):
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

        new_filter = Filter(filter_name, filter_description,
                            filter_type, filter_table)

        # We normalise the filter and compute the effective wavelength.
        new_filter.normalise()

        base.add_filter(new_filter)

164 165 166

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
167

Yannick Roehlly's avatar
Yannick Roehlly committed
168 169
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
185
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
186 187
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
188
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
189 190 191 192 193
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
194 195 196 197
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
198

Yannick Roehlly's avatar
Yannick Roehlly committed
199 200 201 202
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
203 204 205 206 207 208 209 210 211 212 213 214 215 216

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
217
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
218 219 220 221
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
Yannick Roehlly's avatar
Yannick Roehlly committed
222
            age_grid_orig = age_grid_orig * 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
223 224 225
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

226 227 228 229 230 231 232 233
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
234

235 236
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
237 238


239 240
def build_bc2003(base):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03//')
241

242 243
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
        base_filename = bc03_dir + "bc2003_lr_" + key + "_" + imf + "_ssp"
        ssp_filename = base_filename + ".ised_ASCII"
        color3_filename = base_filename + ".3color"
        color4_filename = base_filename + ".4color"

        print("Importing %s..." % base_filename)

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
267 268 269 270 271 272 273
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
        color_table.append(color3_table[1])        # B4000
        color_table.append(color3_table[2])        # B4_VN
        color_table.append(color3_table[3])        # B4_SDSS
        color_table.append(color3_table[4])        # B(912)
274 275 276 277 278 279 280 281 282 283

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

        # Regrid the SSP data to the evenly spaced time grid.
        color_table = interpolate.interp1d(ssp_time, color_table)(time_grid)
        ssp_lumin = interpolate.interp1d(ssp_time,
                                         ssp_lumin)(time_grid)

284
        base.add_bc03(BC03(
285 286 287 288 289 290 291 292
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

293

294 295 296 297
def build_dale2014(base):
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
298
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
299 300 301
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
302
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
303 304
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
305 306 307 308
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
309
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
310
    wave_stell = stell_emission_file[:, 0] * 0.1
311
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
312 313
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
314 315 316 317 318 319 320 321 322 323 324 325

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

326
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
327 328 329
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
330 331
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
332 333 334
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
335 336
        lumin = lumin/norm

337
        base.add_dale2014(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
338 339

    # Emission from dust heated by AGN - Quasar template
340
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
341 342
    print("Importing {}...".format(filename))

343 344 345 346 347 348 349
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
    lumin_quasar = lumin_quasar / norm

    base.add_dale2014(Dale2014(1.0, 0.0, wave, lumin_quasar))
350

351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
def build_dl2007(base):
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2007(DL2007(qpah[model], umin, umin, wave, lumin))
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2007(DL2007(qpah[model], umin, umax, wave, lumin))


424 425 426
def build_dl2014(base):
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

427 428
    qpah = {"000":0.47, "010":1.12, "020":1.77, "030":2.50, "040":3.19,
            "050":3.90, "060":4.58, "070":5.26, "080":5.95, "090":6.63,
429
            "100":7.32}
430 431 432 433 434 435 436

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

    # The models are in Jy cm² sr¯¹ H¯¹. We convert this to W/nm.
    conv = 4. * np.pi * 1e-30 / cst.m_p * cst.c / (wave * wave) * 1e9

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

            # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
            lumin *= conv

            base.add_dl2014(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

                # Conversion from Jy cm² sr¯¹ H¯¹ to W/nm
                lumin *= conv

                base.add_dl2014(DL2014(qpah[model], umin, 1e7, al, wave,
                                       lumin))


490
def build_fritz2006(base):
491
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
492

493 494
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
495 496
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
497 498 499
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
500
    r_ratio = ["10", "30", "60", "100", "150"]
501 502

    # Read and convert the wavelength
503 504 505
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
506 507 508 509 510 511 512 513
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
    #Number of wavelength: 178; Number of comments lines: 28
    nskip = 28
    blocksize = 178

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
            lumin_therm = lumin_therm / norm
            lumin_scatt = lumin_scatt / norm
            lumin_agn = lumin_agn / norm
550

551
            base.add_fritz2006(Fritz2006(params[4], params[3], params[2],
552 553
                                         params[1], params[0], psy[n], wave,
                                         lumin_therm, lumin_scatt,lumin_agn))
554

555

556 557 558 559 560 561 562 563 564
def build_nebular(base):
    lines_dir = os.path.join(os.path.dirname(__file__), 'nebular/')

    # Number of Lyman continuum photon to normalize the nebular continuum
    # templates
    nlyc_continuum = {'0.0001': 2.68786E+53, '0.0004': 2.00964E+53,
                      '0.004': 1.79593E+53, '0.008': 1.58843E+53,
                      '0.02': 1.24713E+53, '0.05': 8.46718E+52}

565
    for Z in ['0.0001', '0.0004', '0.004', '0.008', '0.02', '0.05']:
566 567 568 569
        filename = "{}lines_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, ratio1, ratio2, ratio3 = np.genfromtxt(filename, unpack=True,
                                                     usecols=(0, 3, 7, 11))
570

571 572
        # Convert wavelength from Å to nm
        wave *= 0.1
573

574 575 576 577
        # Convert log(flux) into flux (arbitrary units)
        ratio1 = 10**(ratio1-38.)
        ratio2 = 10**(ratio2-38.)
        ratio3 = 10**(ratio3-38.)
578

579
        # Normalize all lines to Hβ
580
        w = np.where(wave == 486.1)
581 582 583 584
        ratio1 = ratio1/ratio1[w]
        ratio2 = ratio2/ratio2[w]
        ratio3 = ratio3/ratio3[w]

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        lines = NebularLines(np.float(Z), -3., wave, ratio1)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -2., wave, ratio2)
        base.add_nebular_lines(lines)

        lines = NebularLines(np.float(Z), -1., wave, ratio3)
        base.add_nebular_lines(lines)

        filename = "{}continuum_{}.dat".format(lines_dir, Z)
        print("Importing {}...".format(filename))
        wave, cont1, cont2, cont3 = np.genfromtxt(filename, unpack=True,
                                                  usecols=(0, 3, 7, 11))

        # Convert wavelength from Å to nm
        wave *= 0.1

        # Normalize flux from erg s¯¹ Hz¯¹ (Msun/yr)¯¹ to W nm¯¹ photon¯¹ s¯¹
        conv = 1e-7 * cst.c * 1e9 / (wave * wave) / nlyc_continuum[Z]
        cont1 *= conv
        cont2 *= conv
        cont3 *= conv

        cont = NebularContinuum(np.float(Z), -3., wave, cont1)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -2., wave, cont2)
        base.add_nebular_continuum(cont)

        cont = NebularContinuum(np.float(Z), -1., wave, cont3)
        base.add_nebular_continuum(cont)
616 617


618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
def build_base():
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
    build_bc2003(base)
    print("\nDONE\n")
    print('#' * 78)

638
    print("4- Importing Draine and Li (2007) models\n")
639 640 641 642
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

643
    print("5- Importing the updated Draine and Li (2007 models)\n")
644 645 646 647
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

648
    print("6- Importing Fritz et al. (2006) models\n")
649
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
650 651 652
    print("\nDONE\n")
    print('#' * 78)

653
    print("7- Importing Dale et al (2014) templates\n")
654 655 656
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
657
    
658
    print("8- Importing nebular lines and continuum\n")
659
    build_nebular(base)
660 661
    print("\nDONE\n")
    print('#' * 78)
662

663 664
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
665 666 667

if __name__ == '__main__':
    build_base()