Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
CIGALE
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
12
Issues
12
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Package Registry
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
cigale
CIGALE
Commits
eedcad3a
Commit
eedcad3a
authored
Dec 14, 2018
by
Rodrigo González-Castillo
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Change from __init__.py to own module.
parent
9806d8ec
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
238 additions
and
0 deletions
+238
-0
pcigale_plots/parsers/chi2.py
pcigale_plots/parsers/chi2.py
+56
-0
pcigale_plots/parsers/mock.py
pcigale_plots/parsers/mock.py
+92
-0
pcigale_plots/parsers/pdf.py
pcigale_plots/parsers/pdf.py
+90
-0
No files found.
pcigale_plots/parsers/chi2.py
0 → 100644
View file @
eedcad3a
import
glob
from
itertools
import
product
import
matplotlib
matplotlib
.
use
(
'Agg'
)
import
matplotlib.pyplot
as
plt
import
multiprocessing
as
mp
import
numpy
as
np
from
pcigale.utils
import
read_table
def
chi2
(
config
):
"""Plot the χ² values of analysed variables.
"""
input_data
=
read_table
(
config
.
configuration
[
'data_file'
])
chi2_vars
=
config
.
configuration
[
'analysis_params'
][
'variables'
]
chi2_vars
+=
[
band
for
band
in
config
.
configuration
[
'bands'
]
if
band
.
endswith
(
'_err'
)
is
False
]
with
mp
.
Pool
(
processes
=
config
.
configuration
[
'cores'
])
as
pool
:
items
=
product
(
input_data
[
'id'
],
chi2_vars
)
pool
.
starmap
(
_chi2_worker
,
items
)
pool
.
close
()
pool
.
join
()
def
_chi2_worker
(
obj_name
,
var_name
):
"""Plot the reduced χ² associated with a given analysed variable
Parameters
----------
obj_name: string
Name of the object.
var_name: string
Name of the analysed variable..
"""
figure
=
plt
.
figure
()
ax
=
figure
.
add_subplot
(
111
)
var_name
=
var_name
.
replace
(
'/'
,
'_'
)
fnames
=
glob
.
glob
(
"out/{}_{}_chi2-block-*.npy"
.
format
(
obj_name
,
var_name
))
for
fname
in
fnames
:
data
=
np
.
memmap
(
fname
,
dtype
=
np
.
float64
)
data
=
np
.
memmap
(
fname
,
dtype
=
np
.
float64
,
shape
=
(
2
,
data
.
size
//
2
))
ax
.
scatter
(
data
[
1
,
:],
data
[
0
,
:],
color
=
'k'
,
s
=
.
1
)
ax
.
set_xlabel
(
var_name
)
ax
.
set_ylabel
(
"Reduced $\chi^2$"
)
ax
.
set_ylim
(
0.
,
)
ax
.
minorticks_on
()
figure
.
suptitle
(
"Reduced $\chi^2$ distribution of {} for {}."
.
format
(
var_name
,
obj_name
))
figure
.
savefig
(
"out/{}_{}_chi2.pdf"
.
format
(
obj_name
,
var_name
))
plt
.
close
(
figure
)
pcigale_plots/parsers/mock.py
0 → 100644
View file @
eedcad3a
from
astropy.table
import
Table
import
matplotlib
import
sys
matplotlib
.
use
(
'Agg'
)
import
matplotlib.pyplot
as
plt
import
multiprocessing
as
mp
import
numpy
as
np
import
pkg_resources
from
scipy
import
stats
def
mock
(
config
,
mock_results_file
,
best_results_file
,
nologo
):
"""Plot the comparison of input/output values of analysed variables.
"""
try
:
exact
=
Table
.
read
(
best_results_file
)
except
FileNotFoundError
:
print
(
"Best models file {} not found."
.
format
(
best_results_file
))
sys
.
exit
(
1
)
try
:
estimated
=
Table
.
read
(
mock_results_file
)
except
FileNotFoundError
:
print
(
"Mock models file {} not found."
.
format
(
mock_results_file
))
sys
.
exit
(
1
)
params
=
config
.
configuration
[
'analysis_params'
][
'variables'
]
for
param
in
params
:
if
param
.
endswith
(
'_log'
):
param
=
"best."
+
param
exact
[
param
]
=
np
.
log10
(
exact
[
param
[:
-
4
]])
logo
=
False
if
nologo
else
plt
.
imread
(
pkg_resources
.
resource_filename
(
__name__
,
"../resources/CIGALE.png"
))
arguments
=
((
exact
[
"best."
+
param
],
estimated
[
"bayes."
+
param
],
param
,
logo
)
for
param
in
params
)
with
mp
.
Pool
(
processes
=
config
.
configuration
[
'cores'
])
as
pool
:
pool
.
starmap
(
_mock_worker
,
arguments
)
pool
.
close
()
pool
.
join
()
def
_mock_worker
(
exact
,
estimated
,
param
,
logo
):
"""Plot the exact and estimated values of a parameter for the mock analysis
Parameters
----------
exact: Table column
Exact values of the parameter.
estimated: Table column
Estimated values of the parameter.
param: string
Name of the parameter
nologo: boolean
Do not add the logo when set to true.
"""
range_exact
=
np
.
linspace
(
np
.
min
(
exact
),
np
.
max
(
exact
),
100
)
# We compute the linear regression
if
np
.
min
(
exact
)
<
np
.
max
(
exact
):
slope
,
intercept
,
r_value
,
p_value
,
std_err
=
stats
.
linregress
(
exact
,
estimated
)
else
:
slope
=
0.0
intercept
=
1.0
r_value
=
0.0
plt
.
errorbar
(
exact
,
estimated
,
marker
=
'.'
,
label
=
param
,
color
=
'k'
,
linestyle
=
'None'
,
capsize
=
0.
)
plt
.
plot
(
range_exact
,
range_exact
,
color
=
'r'
,
label
=
'1-to-1'
)
plt
.
plot
(
range_exact
,
slope
*
range_exact
+
intercept
,
color
=
'b'
,
label
=
'exact-fit $r^2$ = {:.2f}'
.
format
(
r_value
**
2
))
plt
.
xlabel
(
'Exact'
)
plt
.
ylabel
(
'Estimated'
)
plt
.
title
(
param
)
plt
.
legend
(
loc
=
'best'
,
fancybox
=
True
,
framealpha
=
0.5
,
numpoints
=
1
)
plt
.
minorticks_on
()
if
logo
is
not
False
:
plt
.
figimage
(
logo
,
510
,
55
,
origin
=
'upper'
,
zorder
=
10
,
alpha
=
1
)
plt
.
tight_layout
()
plt
.
savefig
(
'out/mock_{}.pdf'
.
format
(
param
))
plt
.
close
()
pcigale_plots/parsers/pdf.py
0 → 100644
View file @
eedcad3a
import
glob
from
itertools
import
product
import
matplotlib
matplotlib
.
use
(
'Agg'
)
import
matplotlib.pyplot
as
plt
import
multiprocessing
as
mp
import
numpy
as
np
from
pcigale.utils
import
read_table
def
pdf
(
config
):
"""Plot the PDF of analysed variables.
"""
input_data
=
read_table
(
config
.
configuration
[
'data_file'
])
pdf_vars
=
config
.
configuration
[
'analysis_params'
][
'variables'
]
pdf_vars
+=
[
band
for
band
in
config
.
configuration
[
'bands'
]
if
band
.
endswith
(
'_err'
)
is
False
]
with
mp
.
Pool
(
processes
=
config
.
configuration
[
'cores'
])
as
pool
:
items
=
product
(
input_data
[
'id'
],
pdf_vars
)
pool
.
starmap
(
_pdf_worker
,
items
)
pool
.
close
()
pool
.
join
()
def
_pdf_worker
(
obj_name
,
var_name
):
"""Plot the PDF associated with a given analysed variable
Parameters
----------
obj_name: string
Name of the object.
var_name: string
Name of the analysed variable..
"""
var_name
=
var_name
.
replace
(
'/'
,
'_'
)
if
var_name
.
endswith
(
'_log'
):
fnames
=
glob
.
glob
(
"out/{}_{}_chi2-block-*.npy"
.
format
(
obj_name
,
var_name
[:
-
4
]))
log
=
True
else
:
fnames
=
glob
.
glob
(
"out/{}_{}_chi2-block-*.npy"
.
format
(
obj_name
,
var_name
))
log
=
False
likelihood
=
[]
model_variable
=
[]
for
fname
in
fnames
:
data
=
np
.
memmap
(
fname
,
dtype
=
np
.
float64
)
data
=
np
.
memmap
(
fname
,
dtype
=
np
.
float64
,
shape
=
(
2
,
data
.
size
//
2
))
likelihood
.
append
(
np
.
exp
(
-
data
[
0
,
:]
/
2.
))
model_variable
.
append
(
data
[
1
,
:])
likelihood
=
np
.
concatenate
(
likelihood
)
model_variable
=
np
.
concatenate
(
model_variable
)
if
log
is
True
:
model_variable
=
np
.
log10
(
model_variable
)
w
=
np
.
where
(
np
.
isfinite
(
likelihood
)
&
np
.
isfinite
(
model_variable
))
likelihood
=
likelihood
[
w
]
model_variable
=
model_variable
[
w
]
Npdf
=
100
min_hist
=
np
.
min
(
model_variable
)
max_hist
=
np
.
max
(
model_variable
)
Nhist
=
min
(
Npdf
,
len
(
np
.
unique
(
model_variable
)))
if
min_hist
==
max_hist
:
pdf_grid
=
np
.
array
([
min_hist
,
max_hist
])
pdf_prob
=
np
.
array
([
1.
,
1.
])
else
:
pdf_prob
,
pdf_grid
=
np
.
histogram
(
model_variable
,
Nhist
,
(
min_hist
,
max_hist
),
weights
=
likelihood
,
density
=
True
)
pdf_x
=
(
pdf_grid
[
1
:]
+
pdf_grid
[:
-
1
])
/
2.
pdf_grid
=
np
.
linspace
(
min_hist
,
max_hist
,
Npdf
)
pdf_prob
=
np
.
interp
(
pdf_grid
,
pdf_x
,
pdf_prob
)
figure
=
plt
.
figure
()
ax
=
figure
.
add_subplot
(
111
)
ax
.
plot
(
pdf_grid
,
pdf_prob
,
color
=
'k'
)
ax
.
set_xlabel
(
var_name
)
ax
.
set_ylabel
(
"Probability density"
)
ax
.
minorticks_on
()
figure
.
suptitle
(
"Probability distribution function of {} for {}"
.
format
(
var_name
,
obj_name
))
figure
.
savefig
(
"out/{}_{}_pdf.pdf"
.
format
(
obj_name
,
var_name
))
plt
.
close
(
figure
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment