__init__.py 36 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2 3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7 8 9 10 11 12 13 14 15 16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19 20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from astropy.table import Table
23
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
24
                          Dale2014, DL2007, DL2014, NebularLines,
25
                          NebularContinuum, Schreiber2016, THEMIS)
Yannick Roehlly's avatar
Yannick Roehlly committed
26 27


28 29 30 31 32
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
33
    separated by a space (or a carriage return). There are the time vector, 5
34 35 36 37 38 39 40 41 42 43 44 45
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
46
              Vector of the time grid of the SSP in Myr.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
74
    what_line = next(file_structure)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
117
                what_line = next(file_structure)
118

Yannick Roehlly's avatar
Yannick Roehlly committed
119
    # The time grid is in year, we want Myr.
120
    time_grid = np.array(time_grid, dtype=float)
121
    time_grid *= 1.e-6
122 123 124 125

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
126
    wavelength *= 0.1
127 128 129 130

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
131
    luminosity *= 3.826e27
132 133 134 135 136 137 138 139
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


140
def build_filters(base):
141
    filters = []
142
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
143 144 145 146 147 148 149 150 151
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
152

Yannick Roehlly's avatar
Yannick Roehlly committed
153 154 155
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

156 157 158 159 160 161 162
        # We convert to energy if needed
        if filter_type == 'photon':
            filter_table[1] *= filter_table[0]
        elif filter_type != 'energy':
            raise ValueError("Filter transmission type can only be "
                             "'energy' or 'photon'.")

Yannick Roehlly's avatar
Yannick Roehlly committed
163 164 165
        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

166
        new_filter = Filter(filter_name, filter_description, filter_table)
Yannick Roehlly's avatar
Yannick Roehlly committed
167

168 169 170
        # We normalise the filter and compute the pivot wavelength. If the
        # filter is a pseudo-filter used to compute line fluxes, it should not
        # be normalised.
171 172
        if not (filter_name.startswith('PSEUDO') or
                filter_name.startswith('linefilter')):
173 174
            new_filter.normalise()
        else:
175
            new_filter.pivot_wavelength = np.mean(
176 177
                filter_table[0][filter_table[1] > 0]
            )
178
        filters.append(new_filter)
Yannick Roehlly's avatar
Yannick Roehlly committed
179

180
    base.add_filters(filters)
Yannick Roehlly's avatar
Yannick Roehlly committed
181

Médéric Boquien's avatar
Médéric Boquien committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
def build_filters_gazpar(base):
    filters = []
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters_gazpar/')
    for filter_file in glob.glob(filters_dir + '**/*.pb', recursive=True):
        with open(filter_file, 'r') as filter_file_read:
            _ = filter_file_read.readline() # We use the filename for the name
            filter_type = filter_file_read.readline().strip('# \n\t')
            _ = filter_file_read.readline() # We do not yet use the calib type
            filter_desc = filter_file_read.readline().strip('# \n\t')

        filter_name = filter_file.replace(filters_dir, '')[:-3]
        filter_name = filter_name.replace('/', '.')

        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
199

Médéric Boquien's avatar
Médéric Boquien committed
200 201 202
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

203 204 205 206 207 208 209
        # We convert to energy if needed
        if filter_type == 'photon':
            filter_table[1] *= filter_table[0]
        elif filter_type != 'energy':
            raise ValueError("Filter transmission type can only be "
                             "'energy' or 'photon'.")

Médéric Boquien's avatar
Médéric Boquien committed
210 211 212
        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

213
        new_filter = Filter(filter_name, filter_desc, filter_table)
Médéric Boquien's avatar
Médéric Boquien committed
214

215 216 217
        # We normalise the filter and compute the pivot wavelength. If the
        # filter is a pseudo-filter used to compute line fluxes, it should not
        # be normalised.
Médéric Boquien's avatar
Médéric Boquien committed
218 219 220
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
221
            new_filter.pivot_wavelength = np.mean(
Médéric Boquien's avatar
Médéric Boquien committed
222 223 224 225 226
                filter_table[0][filter_table[1] > 0]
            )
        filters.append(new_filter)

    base.add_filters(filters)
227 228 229

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
230

Yannick Roehlly's avatar
Yannick Roehlly committed
231
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
232 233
    time_grid = np.arange(1, 13701)
    fine_time_grid = np.linspace(0.1, 13700, 137000)
Yannick Roehlly's avatar
Yannick Roehlly committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
249
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
250 251
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
252
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
253 254 255 256 257
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
258 259 260 261
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
262

263 264 265 266 267 268 269 270
        # Regrid the SSP data to the evenly spaced time grid. In doing so we
        # assume 10 bursts every 0.1 Myr over a period of 1 Myr in order to
        # capture short evolutionary phases.
        # The time grid starts after 0.1 Myr, so we assume the value is the same
        # as the first actual time step.
        mass_table = interpolate.interp1d(mass_table[0] * 1e3, mass_table[1:],
                                          assume_sorted=True)(fine_time_grid)
        mass_table = np.mean(mass_table.reshape(5, -1, 10), axis=-1)
Yannick Roehlly's avatar
Yannick Roehlly committed
271

272 273 274
        # Extract the age and convert from Gyr to Myr
        ssp_time = np.unique(spec_table[0]) * 1e3
        spec_table = spec_table[1:]
Yannick Roehlly's avatar
Yannick Roehlly committed
275 276

        # Remove the metallicity column from the spec table
277 278 279
        spec_table = spec_table[1:]

        # Extract the wavelength and convert from Å to nm
280
        ssp_wave = spec_table[0][:14501] * 0.1
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        spec_table = spec_table[1:]

        # Extra the fluxes and convert from erg/s/Å to W/nm
        ssp_lumin = spec_table[0].reshape(ssp_time.size, ssp_wave.size).T
        ssp_lumin *= 10 * 1e-7

        # We have to do the interpolation-averaging in several blocks as it is
        # a bit RAM intensive
        ssp_lumin_interp = np.empty((ssp_wave.size, time_grid.size))
        for i in range(0, ssp_wave.size, 100):
            fill_value = (ssp_lumin[i:i+100, 0], ssp_lumin[i:i+100, -1])
            ssp_interp = interpolate.interp1d(ssp_time, ssp_lumin[i:i+100, :],
                                              fill_value=fill_value,
                                              bounds_error=False,
                                              assume_sorted=True)(fine_time_grid)
            ssp_interp = ssp_interp.reshape(ssp_interp.shape[0], -1, 10)
            ssp_lumin_interp[i:i+100, :] = np.mean(ssp_interp, axis=-1)
298

299 300 301
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        #ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                   #np.log10(160000), 50))
        #argmin = np.argmin(10000.-ssp_wave > 0)-1
        #ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    #np.log10(ssp_wave[argmin:]),
                                    #np.log10(ssp_lumin_interp[argmin:, :]),
                                    #assume_sorted=True,
                                    #axis=0)(np.log10(ssp_wave_resamp))

        #ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
        #ssp_lumin = np.vstack([ssp_lumin_interp[:argmin+1, :],
                               #ssp_lumin_resamp])

        ssp_wave = ssp_wave
        ssp_lumin = ssp_lumin_interp
317

318 319 320 321 322
        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
323

324 325
        base.add_m2005(M2005(imf, metallicity, time_grid, ssp_wave,
                             mass_table, ssp_lumin))
Yannick Roehlly's avatar
Yannick Roehlly committed
326 327


328 329
def build_bc2003(base, res):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03/')
330

331 332
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
333
    fine_time_grid = np.linspace(0.1, 13999, 139990)
334 335 336 337 338 339 340 341 342 343 344 345

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
346 347 348 349 350 351
        ssp_filename = "{}bc2003_{}_{}_{}_ssp.ised_ASCII".format(bc03_dir, res,
                                                                 key, imf)
        color3_filename = "{}bc2003_lr_{}_{}_ssp.3color".format(bc03_dir, key,
                                                                imf)
        color4_filename = "{}bc2003_lr_{}_{}_ssp.4color".format(bc03_dir, key,
                                                                imf)
352

353
        print("Importing {}...".format(ssp_filename))
354 355 356 357 358

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
359 360 361
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
362 363 364 365 366

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        # Regrid the SSP data to the evenly spaced time grid. In doing so we
        # assume 10 bursts every 0.1 Myr over a period of 1 Myr in order to
        # capture short evolutionary phases.
        # The time grid starts after 0.1 Myr, so we assume the value is the same
        # as the first actual time step.
        fill_value = (color_table[:, 0], color_table[:, -1])
        color_table = interpolate.interp1d(ssp_time, color_table,
                                           fill_value=fill_value,
                                           bounds_error=False,
                                           assume_sorted=True)(fine_time_grid)
        color_table = np.mean(color_table.reshape(3, -1, 10), axis=-1)

        # We have to do the interpolation-averaging in several blocks as it is
        # a bit RAM intensive
        ssp_lumin_interp = np.empty((ssp_wave.size, time_grid.size))
        for i in range(0, ssp_wave.size, 100):
            fill_value = (ssp_lumin[i:i+100, 0], ssp_lumin[i:i+100, -1])
            ssp_interp = interpolate.interp1d(ssp_time, ssp_lumin[i:i+100, :],
                                              fill_value=fill_value,
                                              bounds_error=False,
                                              assume_sorted=True)(fine_time_grid)
            ssp_interp = ssp_interp.reshape(ssp_interp.shape[0], -1, 10)
            ssp_lumin_interp[i:i+100, :] = np.mean(ssp_interp, axis=-1)
390

391 392 393 394 395 396 397 398
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                np.log10(160000), 50))
        argmin = np.argmin(10000.-ssp_wave > 0)-1
        ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    np.log10(ssp_wave[argmin:]),
399
                                    np.log10(ssp_lumin_interp[argmin:, :]),
400 401 402 403
                                    assume_sorted=True,
                                    axis=0)(np.log10(ssp_wave_resamp))

        ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
404 405
        ssp_lumin = np.vstack([ssp_lumin_interp[:argmin+1, :],
                               ssp_lumin_resamp])
406

407
        base.add_bc03(BC03(
408 409 410 411 412 413 414 415
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

416

417
def build_dale2014(base):
418
    models = []
419 420 421
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
422
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
423 424 425
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
426
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
427 428
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
429 430 431 432
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
433
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
434
    wave_stell = stell_emission_file[:, 0] * 0.1
435
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
436 437
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
438 439 440 441 442 443 444 445 446 447 448 449

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

450
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
451 452 453
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
454 455
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
456 457 458
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
459
        lumin /= norm
460

461
        models.append(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
462
    # Emission from dust heated by AGN - Quasar template
463
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
464 465
    print("Importing {}...".format(filename))

466 467 468 469
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
470
    lumin_quasar /= norm
471

472 473 474
    models.append(Dale2014(1.0, 0.0, wave, lumin_quasar))

    base.add_dale2014(models)
475

476

477
def build_dl2007(base):
478
    models = []
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

497
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
498 499
    MdMH = {"00": 0.0100, "10": 0.0100, "20": 0.0101, "30": 0.0102,
            "40": 0.0102, "50": 0.0103, "60": 0.0104}
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

515 516
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
517 518 519 520 521 522 523 524 525 526 527 528 529 530

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
531 532
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
533

534
            models.append(DL2007(qpah[model], umin, umin, wave, lumin))
535 536 537 538 539 540 541 542 543 544 545 546 547
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

548 549
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
550

551 552
                models.append(DL2007(qpah[model], umin, umax, wave, lumin))
    base.add_dl2007(models)
553 554


555
def build_dl2014(base):
556
    models = []
557 558
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

Médéric Boquien's avatar
Médéric Boquien committed
559 560 561
    qpah = {"000": 0.47, "010": 1.12, "020": 1.77, "030": 2.50, "040": 3.19,
            "050": 3.90, "060": 4.58, "070": 5.26, "080": 5.95, "090": 6.63,
            "100": 7.32}
562 563 564 565 566 567 568

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
569

570 571 572 573
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

574
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
575 576 577
    MdMH = {"000": 0.0100, "010": 0.0100, "020": 0.0101, "030": 0.0102,
            "040": 0.0102, "050": 0.0103, "060": 0.0104, "070": 0.0105,
            "080": 0.0106, "090": 0.0107, "100": 0.0108}
578

579 580 581 582 583 584 585 586 587 588 589 590 591
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

592 593
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
594 595 596 597 598 599 600 601 602 603 604 605

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

606 607
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
608

609
            models.append(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
610 611 612 613 614 615 616 617 618 619
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

620 621
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
622

623
                models.append(DL2014(qpah[model], umin, 1e7, al, wave, lumin))
624

625
    base.add_dl2014(models)
626

627
def build_fritz2006(base):
628
    models = []
629
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
630

631 632
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
633 634
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
635 636 637
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
638
    r_ratio = ["10", "30", "60", "100", "150"]
639 640

    # Read and convert the wavelength
641 642 643
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
644 645 646 647
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
Médéric Boquien's avatar
Médéric Boquien committed
648
    # Number of wavelengths: 178; Number of comments lines: 28
649 650 651
    nskip = 28
    blocksize = 178

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
685 686 687
            lumin_therm /= norm
            lumin_scatt /= norm
            lumin_agn /= norm
688

689
            models.append(Fritz2006(params[4], params[3], params[2],
690
                                         params[1], params[0], psy[n], wave,
Médéric Boquien's avatar
Médéric Boquien committed
691
                                         lumin_therm, lumin_scatt, lumin_agn))
692

693
    base.add_fritz2006(models)
694

695
def build_nebular(base):
696 697
    models_lines = []
    models_cont = []
698

699 700 701
    nebular_dir = os.path.join(os.path.dirname(__file__), 'nebular/')
    print("Importing {}...".format(nebular_dir + 'lines.dat'))
    lines = np.genfromtxt(nebular_dir + 'lines.dat')
702

703 704 705 706
    tmp = Table.read(nebular_dir + 'line_wavelengths.dat', format='ascii')
    wave_lines = tmp['col1'].data
    name_lines = tmp['col2'].data

707 708
    print("Importing {}...".format(nebular_dir + 'continuum.dat'))
    cont = np.genfromtxt(nebular_dir + 'continuum.dat')
709

710 711 712
    # Convert wavelength from Å to nm
    wave_lines *= 0.1
    wave_cont = cont[:1600, 0] * 0.1
713

714 715
    # Get the list of metallicities
    metallicities = np.unique(lines[:, 1])
716

717 718 719
    # Keep only the fluxes
    lines = lines[:, 2:]
    cont = cont[:, 1:]
720

721 722 723
    # We select only models with ne=100. Other values could be included later
    lines = lines[:, 1::3]
    cont = cont[:, 1::3]
724

725 726
    # Convert lines to W and to a linear scale
    lines = 10**(lines-7)
727

728 729 730
    # Convert continuum to W/nm
    cont *= np.tile(1e-7 * cst.c * 1e9 / wave_cont**2,
                    metallicities.size)[:, np.newaxis]
731

732 733 734 735 736
    # Import lines
    for idx, metallicity in enumerate(metallicities):
        spectra = lines[idx::6, :]
        for logU, spectrum in zip(np.around(np.arange(-4., -.9, .1), 1),
                                  spectra.T):
737 738
            models_lines.append(NebularLines(metallicity, logU, name_lines,
                                             wave_lines, spectrum))
739

740 741 742 743 744 745 746
    # Import continuum
    for idx, metallicity in enumerate(metallicities):
        spectra = cont[1600 * idx: 1600 * (idx+1), :]
        for logU, spectrum in zip(np.around(np.arange(-4., -.9, .1), 1),
                                  spectra.T):
            models_cont.append(NebularContinuum(metallicity, logU, wave_cont,
                                                spectrum))
747

748
    base.add_nebular_lines(models_lines)
749
    base.add_nebular_continuum(models_cont)
750

751

752 753
def build_schreiber2016(base):
    models = []
754 755 756 757
    schreiber2016_dir = os.path.join(os.path.dirname(__file__),
                                     'schreiber2016/')

    print("Importing {}...".format(schreiber2016_dir + 'g15_pah.fits'))
758
    pah = Table.read(schreiber2016_dir + 'g15_pah.fits')
759
    print("Importing {}...".format(schreiber2016_dir + 'g15_dust.fits'))
760 761
    dust = Table.read(schreiber2016_dir + 'g15_dust.fits')

762
    # Getting the lambda grid for the templates and convert from μm to nm.
763
    wave = dust['LAM'][0, 0, :].data * 1e3
764 765

    for td in np.arange(15., 100.):
766
        # Find the closest temperature in the model list of tdust
767
        tsed = np.argmin(np.absolute(dust['TDUST'][0].data-td))
768 769

        # The models are in νFν.  We convert this to W/nm.
770 771
        lumin_dust = dust['SED'][0, tsed, :].data / wave
        lumin_pah = pah['SED'][0, tsed, :].data / wave
772 773 774 775

        models.append(Schreiber2016(0, td, wave, lumin_dust))
        models.append(Schreiber2016(1, td, wave, lumin_pah))

776 777
    base.add_schreiber2016(models)

778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
def build_themis(base):
    models = []
    themis_dir = os.path.join(os.path.dirname(__file__), 'themis/')

    # Mass fraction of hydrocarbon solids i.e., a-C(:H) smaller than 1.5 nm,
    # also known as HAC
    qhac = {"000": 0.02, "010": 0.06, "020": 0.10, "030": 0.14, "040": 0.17,
            "050": 0.20, "060": 0.24, "070": 0.28, "080": 0.32, "090": 0.36,
            "100": 0.40}

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00", "80.00"]

    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
    MdMH = {"000": 7.4e-3, "010": 7.4e-3, "020": 7.4e-3, "030": 7.4e-3,
            "040": 7.4e-3, "050": 7.4e-3, "060": 7.4e-3, "070": 7.4e-3,
            "080": 7.4e-3, "090": 7.4e-3, "100": 7.4e-3}

    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(themis_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-576:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))

    # We convert wavelengths from μm to nm
    wave *= 1000.

    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9

    for model in sorted(qhac.keys()):
        for umin in uminimum:
            filename = (themis_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-576:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))

            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv / MdMH[model]

            models.append(THEMIS(qhac[model], umin, umin, 1.0, wave, lumin))
            for al in alpha:
                filename = (themis_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-576:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))

                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]

                models.append(THEMIS(qhac[model], umin, 1e7, al, wave, lumin))

    base.add_themis(models)


849
def build_base(bc03res='lr'):
850 851 852 853 854 855
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
Médéric Boquien's avatar
Médéric Boquien committed
856
    build_filters_gazpar(base)
857 858 859 860 861 862 863 864 865
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
866
    build_bc2003(base, bc03res)
867 868 869
    print("\nDONE\n")
    print('#' * 78)

870
    print("4- Importing Draine and Li (2007) models\n")
871 872 873 874
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

875
    print("5- Importing the updated Draine and Li (2007 models)\n")
876 877 878 879
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

880
    print("6- Importing Fritz et al. (2006) models\n")
881
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
882 883 884
    print("\nDONE\n")
    print('#' * 78)

885
    print("7- Importing Dale et al (2014) templates\n")
886 887 888
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
Médéric Boquien's avatar
Médéric Boquien committed
889

890
    print("8- Importing nebular lines and continuum\n")
891
    build_nebular(base)
892 893
    print("\nDONE\n")
    print('#' * 78)
894

895 896 897 898
    print("9- Importing Schreiber et al (2016) models\n")
    build_schreiber2016(base)
    print("\nDONE\n")
    print('#' * 78)
899 900 901 902 903 904

    print("10- Importing Jones et al (2017) models)\n")
    build_themis(base)
    print("\nDONE\n")
    print('#' * 78)

905 906
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
907 908 909

if __name__ == '__main__':
    build_base()