results.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
# Copyright (C) 2017 Universidad de Antofagasta
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
# Author: Médéric Boquien

"""These classes manage the results from the analysis. The main class
ResultsManager contains instances of BayesResultsManager and BestResultsManager
that contain the bayesian and best-fit estimates of the physical properties
along with the names of the parameters, which are proportional to the mass,
etc. Each of these classes contain a merge() method that allows to combine
results of the analysis with different blocks of models.
"""

from astropy.table import Table, Column
import numpy as np

17
from .utils import SharedArray
18
19
20
21
22
23
24
25
26
27
28
29
30


class BayesResultsManager(object):
    """This class contains the results of the bayesian estimates of the
    physical properties of the analysed objects. It is constructed from a
    ModelsManager instance, which provides the required information on the
    shape of the arrays. Because it can contain the partial results for only
    one block of models, we also store the sum of the model weights (that is
    the likelihood) so we can merge different instances to compute the combined
    estimates of the physical properties.

    """
    def __init__(self, models):
31
        nobs = len(models.obs)
32
        self.propertiesnames = models.allpropnames
33
34
35
36
37
38
        extpropnames = [prop for prop in models.obs.conf['analysis_params']['variables']
                        if (prop in models.allextpropnames or
                            prop[:-4] in models.allextpropnames)]
        intpropnames = [prop for prop in models.obs.conf['analysis_params']['variables']
                        if (prop in models.allintpropnames or
                            prop[:-4] in models.allintpropnames)]
39
        self.nproperties = len(intpropnames) + len(extpropnames)
40
41
42
43
44
45

        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
46
47
48
49
        self.intmean = {prop: SharedArray(nobs) for prop in intpropnames}
        self.interror = {prop: SharedArray(nobs) for prop in intpropnames}
        self.extmean = {prop: SharedArray(nobs) for prop in extpropnames}
        self.exterror = {prop: SharedArray(nobs) for prop in extpropnames}
50
51
        self.fluxmean = {band: SharedArray(nobs) for band in models.flux}
        self.fluxerror = {band: SharedArray(nobs) for band in models.flux}
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        self.weight = SharedArray(nobs)

    @property
    def mean(self):
        return self._mean

    @mean.setter
    def mean(self, mean):
        self._mean = mean

    @property
    def error(self):
        return self._error

    @error.setter
    def error(self, error):
        self._error = error

    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, weight):
        self._weight = weight
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BayesResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BayesResultsManager)
                    for result in results)):
            raise TypeError("A list of BayesResultsManager is required.")

        merged = results[0]
95
        intmean = {prop: np.array([result.intmean[prop]
96
97
                                   for result in results])
                   for prop in merged.intmean}
98
        interror = {prop: np.array([result.interror[prop]
99
100
                                    for result in results])
                    for prop in merged.interror}
101
        extmean = {prop: np.array([result.extmean[prop]
102
103
                                   for result in results])
                   for prop in merged.extmean}
104
        exterror = {prop: np.array([result.exterror[prop]
105
106
                                    for result in results])
                    for prop in merged.exterror}
107
108
109
110
111
112
        fluxmean = {band: np.array([result.fluxmean[band]
                                   for result in results])
                   for band in merged.fluxmean}
        fluxerror = {band: np.array([result.fluxerror[band]
                                    for result in results])
                    for band in merged.fluxerror}
113
        weight = np.array([result.weight for result in results])
114

115
        totweight = np.nansum(weight, axis=0)
116
117

        for prop in merged.intmean:
118
            merged.intmean[prop][:] = np.nansum(
119
120
121
122
123
124
125
                intmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
126
            merged.interror[prop][:] = np.sqrt(np.nansum(
127
                weight * (interror[prop]**2. + (intmean[prop]-merged.intmean[prop])**2), axis=0) / totweight)
128
129

        for prop in merged.extmean:
130
            merged.extmean[prop][:] = np.nansum(
131
132
133
134
135
136
137
                extmean[prop] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
138
            merged.exterror[prop][:] = np.sqrt(np.nansum(
139
                weight * (exterror[prop]**2. + (extmean[prop]-merged.extmean[prop])**2), axis=0) / totweight)
140
141
142

        for prop in merged.extmean:
            if prop.endswith('_log'):
143
144
                merged.exterror[prop][:] = \
                    np.maximum(0.02, merged.exterror[prop])
145
            else:
146
147
148
                merged.exterror[prop][:] = \
                    np.maximum(0.05 * merged.extmean[prop],
                               merged.exterror[prop])
149

150
        for band in merged.fluxmean:
151
            merged.fluxmean[band][:] = np.nansum(
152
153
154
155
156
157
158
                fluxmean[band] * weight, axis=0) / totweight

            # We compute the merged standard deviation by combining the
            # standard deviations for each block. See
            # http://stats.stackexchange.com/a/10445 where the number of
            # datapoints has been substituted with the weights. In short we
            # exploit the fact that Var(X) = E(Var(X)) + Var(E(X)).
159
            merged.fluxerror[band][:] = np.sqrt(np.nansum(
160
161
162
                weight * (fluxerror[band]**2. + (fluxmean[band]-merged.fluxmean[band])**2), axis=0) / totweight)


163
164
165
166
167
168
169
170
171
172
173
174
175
176
        return merged


class BestResultsManager(object):
    """This class contains the physical properties of the best fit of the
    analysed objects. It is constructed from a ModelsManager instance, which
    provides the required information on the shape of the arrays. Because it
    can contain the partial results for only one block of models, we also store
    the index so we can merge different instances to compute the best fit.

    """

    def __init__(self, models):
        self.obs = models.obs
177
        nobs = len(models.obs)
178
179
180
181
182
        # Arrays where we store the data related to the models. For memory
        # efficiency reasons, we use RawArrays that will be passed in argument
        # to the pool. Each worker will fill a part of the RawArrays. It is
        # important that there is no conflict and that two different workers do
        # not write on the same section.
183
        self.flux = {band: SharedArray(nobs) for band in models.obs.bands}
184
185
        allintpropnames = models.allintpropnames
        allextpropnames = models.allextpropnames
186
187
188
189
190
191
192
        self.intprop = {prop: SharedArray(nobs)
                        for prop in allintpropnames}
        self.extprop = {prop: SharedArray(nobs)
                        for prop in allextpropnames}
        self.chi2 = SharedArray(nobs)
        self.scaling = SharedArray(nobs)

193
        # We store the index as a float to work around python issue #10746
194
        self.index = SharedArray(nobs)
195
196

    @property
197
    def flux(self):
198
199
200
201
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
202
203
204
205
206
        return self._flux

    @flux.setter
    def flux(self, flux):
        self._flux = flux
207

208
    @property
209
    def intprop(self):
210
211
212
213
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
214
215
216
217
218
        return self._intprop

    @intprop.setter
    def intprop(self, intprop):
        self._intprop = intprop
219
220

    @property
221
    def extprop(self):
222
223
224
225
        """Returns a shared array containing the fluxes of the best fit for
        each observation.

        """
226
        return self._extprop
227

228
229
230
    @extprop.setter
    def extprop(self, extprop):
        self._extprop = extprop
231
232
233
234
235
236
237

    @property
    def chi2(self):
        """Returns a shared array containing the raw chi² of the best fit for
        each observation.

        """
238
        return self._chi2
239

240
241
242
243
    @chi2.setter
    def chi2(self, chi2):
        self._chi2 = chi2

244
245
246
247
248
249
    @property
    def index(self):
        """Returns a shared array containing the index of the best fit for each
        observation.

        """
250
        return self._index
251

252
253
254
255
    @index.setter
    def index(self, index):
        self._index = index

256
257
258
259
260
261
    @property
    def scaling(self):
        """Returns a shared array containing the scaling of the best fit for each
        observation.

        """
262
        return self._scaling
263
264
265
266
267

    @scaling.setter
    def scaling(self, scaling):
        self._scaling = scaling

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of BestResultsManager instances
            List of the partial results to be merged

        """
        if not (isinstance(results, list) and
                all(isinstance(result, BestResultsManager)
                    for result in results)):
            raise TypeError("A list of BestResultsManager is required.")

        if len(results) == 1:
            return results[0]

287
        chi2 = np.array([result.chi2 for result in results])
288
        merged = results[0]
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        for iobs, bestidx in enumerate(np.argsort(chi2, axis=0)[0, :]):
            if np.isfinite(bestidx):
                for band in merged.flux:
                    merged.flux[band][iobs] = \
                        results[bestidx].flux[band][iobs]
                for prop in merged.intprop:
                    merged.intprop[prop][iobs] = \
                        results[bestidx].intprop[prop][iobs]
                for prop in merged.extprop:
                    merged.extprop[prop][iobs] = \
                        results[bestidx].extprop[prop][iobs]
                merged.chi2[iobs] = results[bestidx].chi2[iobs]
                merged.scaling[iobs] = results[bestidx].scaling[iobs]
                merged.index[iobs] = results[bestidx].index[iobs]
303
304
305
306
307
308
309
310

        return merged

    def analyse_chi2(self):
        """Function to analyse the best chi^2 and find out what fraction of
         objects seems to be overconstrainted.

        """
311
312
313
314
315
316
317
318
        # If no best model has been found, it means none could be properly
        # fitted. We warn the user in that case
        bad = self.obs.table['id'][np.isnan(self.chi2)].tolist()
        if len(bad) > 0:
            print(f"No suitable model found for {', '.join(bad)}. It may be "
                  f"that models are older than the universe or that your χ² are"
                  f" very large.")

319
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
320
321
322
323
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        chi2_red = self.chi2 / (nobs - 1)
        # If low values of reduced chi^2, it means that the data are overfitted
        # Errors might be under-estimated or not enough valid data.
324
325
        print(f"{np.round((chi2_red < 1e-12).sum() / chi2_red.size, 1)}% of "
              f"the objects have χ²_red~0 and "
326
              f"{np.round((chi2_red < 0.5).sum() / chi2_red.size, 1)}% "
327
              f"χ²_red<0.5")
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378


class ResultsManager(object):
    """This class contains the physical properties (best fit and bayesian) of
    the analysed objects. It is constructed from a ModelsManager instance,
    which provides the required information to initialise the instances of
    BestResultsManager and BayesResultsManager that store the results.

    """

    def __init__(self, models):
        self.conf = models.conf
        self.obs = models.obs
        self.params = models.params

        self.bayes = BayesResultsManager(models)
        self.best = BestResultsManager(models)

    @staticmethod
    def merge(results):
        """Merge a list of partial results computed on individual blocks of
        models.

        Parameters
        ----------
        results: list of ResultsManager instances
            List of the partial results to be merged

        """
        merged = results[0]
        merged.bayes = BayesResultsManager.merge([result.bayes
                                                  for result in results])
        merged.best = BestResultsManager.merge([result.best
                                                for result in results])

        return merged

    def save(self, filename):
        """Save the estimated values derived from the analysis of the PDF and
        the parameters associated with the best fit. A simple text file and a
        FITS file are generated.

        Parameters
        ----------
        filename:

        """
        table = Table()

        table.add_column(Column(self.obs.table['id'], name="id"))

379
        for prop in sorted(self.bayes.intmean):
380
            table.add_column(Column(self.bayes.intmean[prop],
381
                                    name="bayes."+prop))
382
            table.add_column(Column(self.bayes.interror[prop],
383
384
                                    name="bayes."+prop+"_err"))
        for prop in sorted(self.bayes.extmean):
385
            table.add_column(Column(self.bayes.extmean[prop],
386
                                    name="bayes."+prop))
387
            table.add_column(Column(self.bayes.exterror[prop],
388
                                    name="bayes."+prop+"_err"))
389
390
391
392
393
        for band in sorted(self.bayes.fluxmean):
            table.add_column(Column(self.bayes.fluxmean[band],
                                    name="bayes."+band))
            table.add_column(Column(self.bayes.fluxerror[band],
                                    name="bayes."+band+"_err"))
394
395

        table.add_column(Column(self.best.chi2, name="best.chi_square"))
396
        obs = [self.obs.table[obs].data for obs in self.obs.tofit]
397
398
399
400
        nobs = np.count_nonzero(np.isfinite(obs), axis=0)
        table.add_column(Column(self.best.chi2 / (nobs - 1),
                                name="best.reduced_chi_square"))

401
        for prop in sorted(self.best.intprop):
402
            table.add_column(Column(self.best.intprop[prop],
403
404
                                    name="best."+prop))
        for prop in sorted(self.best.extprop):
405
            table.add_column(Column(self.best.extprop[prop],
406
407
408
                                    name="best."+prop))

        for band in self.obs.bands:
Médéric Boquien's avatar
Médéric Boquien committed
409
            if band.startswith('line.') or band.startswith('linefilter.'):
410
411
412
                unit = 'W/m^2'
            else:
                unit = 'mJy'
413
            table.add_column(Column(self.best.flux[band],
414
                                    name="best."+band, unit=unit))
415
416


417
        table.write(f"out/{filename}.txt", format='ascii.fixed_width',
418
                    delimiter=None)
419
        table.write(f"out/{filename}.fits", format='fits')