__init__.py 32 KB
Newer Older
Yannick Roehlly's avatar
Yannick Roehlly committed
1
# -*- coding: utf-8 -*-
2
3
# Copyright (C) 2012, 2013 Centre de données Astrophysiques de Marseille
# Licensed under the CeCILL-v2 licence - see Licence_CeCILL_V2-en.txt
Yannick Roehlly's avatar
Yannick Roehlly committed
4
# Authors: Yannick Roehlly, Médéric Boquien, Laure Ciesla
Yannick Roehlly's avatar
Yannick Roehlly committed
5

6
"""
Yannick Roehlly's avatar
Yannick Roehlly committed
7
8
9
10
11
12
13
14
15
16
This script is used the build pcigale internal database containing:
- The various filter transmission tables;
- The Maraston 2005 single stellar population (SSP) data;
- The Dale and Helou 2002 infra-red templates.

"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
import glob
17
import io
18
import itertools
Yannick Roehlly's avatar
Yannick Roehlly committed
19
20
import numpy as np
from scipy import interpolate
21
import scipy.constants as cst
22
from astropy.table import Table
23
from pcigale.data import (Database, Filter, M2005, BC03, Fritz2006,
24
                          Dale2014, DL2007, DL2014, NebularLines,
25
                          NebularContinuum, Schreiber2016)
Yannick Roehlly's avatar
Yannick Roehlly committed
26
27


28
29
30
31
32
def read_bc03_ssp(filename):
    """Read a Bruzual and Charlot 2003 ASCII SSP file

    The ASCII SSP files of Bruzual and Charlot 2003 have se special structure.
    A vector is stored with the number of values followed by the values
Yannick Roehlly's avatar
Yannick Roehlly committed
33
    separated by a space (or a carriage return). There are the time vector, 5
34
35
36
37
38
39
40
41
42
43
44
45
    (for Chabrier IMF) or 6 lines (for Salpeter IMF) that we don't care of,
    then the wavelength vector, then the luminosity vectors, each followed by
    a 52 value table, then a bunch of other table of information that are also
    in the *colors files.

    Parameters
    ----------
    filename : string

    Returns
    -------
    time_grid: numpy 1D array of floats
Yannick Roehlly's avatar
Yannick Roehlly committed
46
              Vector of the time grid of the SSP in Myr.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    wavelength: numpy 1D array of floats
                Vector of the wavelength grid of the SSP in nm.
    spectra: numpy 2D array of floats
             Array containing the SSP spectra, first axis is the wavelength,
             second one is the time.

    """

    def file_structure_generator():
        """Generator used to identify table lines in the SSP file

        In the SSP file, the vectors are store one next to the other, but
        there are 5 informational lines after the time vector. We use this
        generator to the if we are on lines to read or not.
        """
        if "chab" in filename:
            bad_line_number = 5
        else:
            bad_line_number = 6
        yield("data")
        for i in range(bad_line_number):
            yield("bad")
        while True:
            yield("data")

    file_structure = file_structure_generator()
    # Are we in a data line or a bad one.
74
    what_line = next(file_structure)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    # Variable conting, in reverse order, the number of value still to
    # read for the read vector.
    counter = 0

    time_grid = []
    full_table = []
    tmp_table = []

    with open(filename) as file_:
        # We read the file line by line.
        for line in file_:
            if what_line == "data":
                # If we are in a "data" line, we analyse each number.
                for item in line.split():
                    if counter == 0:
                        # If counter is 0, then we are not reading a vector
                        # and the first number is the length of the next
                        # vector.
                        counter = int(item)
                    else:
                        # If counter > 0, we are currently reading a vector.
                        tmp_table.append(float(item))
                        counter -= 1
                        if counter == 0:
                            # We reached the end of the vector. If we have not
                            # yet store the time grid (the first table) we are
                            # currently reading it.
                            if time_grid == []:
                                time_grid = tmp_table[:]
                            # Else, we store the vector in the full table,
                            # only if its length is superior to 250 to get rid
                            # of the 52 item unknown vector and the 221 (time
                            # grid length) item vectors at the end of the
                            # file.
                            elif len(tmp_table) > 250:
                                full_table.append(tmp_table[:])

                            tmp_table = []

            # If at the end of a line, we have finished reading a vector, it's
            # time to change to the next structure context.
            if counter == 0:
117
                what_line = next(file_structure)
118

Yannick Roehlly's avatar
Yannick Roehlly committed
119
    # The time grid is in year, we want Myr.
120
    time_grid = np.array(time_grid, dtype=float)
121
    time_grid *= 1.e-6
122
123
124
125

    # The first "long" vector encountered is the wavelength grid. The value
    # are in Ångström, we convert it to nano-meter.
    wavelength = np.array(full_table.pop(0), dtype=float)
126
    wavelength *= 0.1
127
128
129
130

    # The luminosities are in Solar luminosity (3.826.10^33 ergs.s-1) per
    # Ångström, we convert it to W/nm.
    luminosity = np.array(full_table, dtype=float)
131
    luminosity *= 3.826e27
132
133
134
135
136
137
138
139
    # Transposition to have the time in the second axis.
    luminosity = luminosity.transpose()

    # In the SSP, the time grid begins at 0, but not in the *colors file, so
    # we remove t=0 from the SSP.
    return time_grid[1:], wavelength, luminosity[:, 1:]


140
def build_filters(base):
141
    filters = []
142
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters/')
Yannick Roehlly's avatar
Yannick Roehlly committed
143
144
145
146
147
148
149
150
151
    for filter_file in glob.glob(filters_dir + '*.dat'):
        with open(filter_file, 'r') as filter_file_read:
            filter_name = filter_file_read.readline().strip('# \n\t')
            filter_type = filter_file_read.readline().strip('# \n\t')
            filter_description = filter_file_read.readline().strip('# \n\t')
        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
152

Yannick Roehlly's avatar
Yannick Roehlly committed
153
154
155
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

156
157
158
159
160
161
162
        # We convert to energy if needed
        if filter_type == 'photon':
            filter_table[1] *= filter_table[0]
        elif filter_type != 'energy':
            raise ValueError("Filter transmission type can only be "
                             "'energy' or 'photon'.")

Yannick Roehlly's avatar
Yannick Roehlly committed
163
164
165
        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

166
        new_filter = Filter(filter_name, filter_description, filter_table)
Yannick Roehlly's avatar
Yannick Roehlly committed
167
168

        # We normalise the filter and compute the effective wavelength.
169
170
171
172
173
174
175
176
        # If the filter is a pseudo-filter used to compute line fluxes, it
        # should not be normalised.
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
            new_filter.effective_wavelength = np.mean(
                filter_table[0][filter_table[1] > 0]
            )
177
        filters.append(new_filter)
Yannick Roehlly's avatar
Yannick Roehlly committed
178

179
    base.add_filters(filters)
Yannick Roehlly's avatar
Yannick Roehlly committed
180

Médéric Boquien's avatar
Médéric Boquien committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def build_filters_gazpar(base):
    filters = []
    filters_dir = os.path.join(os.path.dirname(__file__), 'filters_gazpar/')
    for filter_file in glob.glob(filters_dir + '**/*.pb', recursive=True):
        with open(filter_file, 'r') as filter_file_read:
            _ = filter_file_read.readline() # We use the filename for the name
            filter_type = filter_file_read.readline().strip('# \n\t')
            _ = filter_file_read.readline() # We do not yet use the calib type
            filter_desc = filter_file_read.readline().strip('# \n\t')

        filter_name = filter_file.replace(filters_dir, '')[:-3]
        filter_name = filter_name.replace('/', '.')

        filter_table = np.genfromtxt(filter_file)
        # The table is transposed to have table[0] containing the wavelength
        # and table[1] containing the transmission.
        filter_table = filter_table.transpose()
198

Médéric Boquien's avatar
Médéric Boquien committed
199
200
201
        # We convert the wavelength from Å to nm.
        filter_table[0] *= 0.1

202
203
204
205
206
207
208
        # We convert to energy if needed
        if filter_type == 'photon':
            filter_table[1] *= filter_table[0]
        elif filter_type != 'energy':
            raise ValueError("Filter transmission type can only be "
                             "'energy' or 'photon'.")

Médéric Boquien's avatar
Médéric Boquien committed
209
210
211
        print("Importing %s... (%s points)" % (filter_name,
                                               filter_table.shape[1]))

212
        new_filter = Filter(filter_name, filter_desc, filter_table)
Médéric Boquien's avatar
Médéric Boquien committed
213
214
215
216
217
218
219
220
221
222
223
224
225

        # We normalise the filter and compute the effective wavelength.
        # If the filter is a pseudo-filter used to compute line fluxes, it
        # should not be normalised.
        if not filter_name.startswith('PSEUDO'):
            new_filter.normalise()
        else:
            new_filter.effective_wavelength = np.mean(
                filter_table[0][filter_table[1] > 0]
            )
        filters.append(new_filter)

    base.add_filters(filters)
226
227
228

def build_m2005(base):
    m2005_dir = os.path.join(os.path.dirname(__file__), 'maraston2005/')
Yannick Roehlly's avatar
Yannick Roehlly committed
229

Yannick Roehlly's avatar
Yannick Roehlly committed
230
231
    # Age grid (1 Myr to 13.7 Gyr with 1 Myr step)
    age_grid = np.arange(1, 13701)
Yannick Roehlly's avatar
Yannick Roehlly committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    # Transpose the table to have access to each value vector on the first
    # axis
    kroupa_mass = np.genfromtxt(m2005_dir + 'stellarmass.kroupa').transpose()
    salpeter_mass = \
        np.genfromtxt(m2005_dir + '/stellarmass.salpeter').transpose()

    for spec_file in glob.glob(m2005_dir + '*.rhb'):

        print("Importing %s..." % spec_file)

        spec_table = np.genfromtxt(spec_file).transpose()
        metallicity = spec_table[1, 0]

        if 'krz' in spec_file:
247
            imf = 'krou'
Yannick Roehlly's avatar
Yannick Roehlly committed
248
249
            mass_table = np.copy(kroupa_mass)
        elif 'ssz' in spec_file:
250
            imf = 'salp'
Yannick Roehlly's avatar
Yannick Roehlly committed
251
252
253
254
255
            mass_table = np.copy(salpeter_mass)
        else:
            raise ValueError('Unknown IMF!!!')

        # Keep only the actual metallicity values in the mass table
256
257
258
259
        # we don't take the first column which contains metallicity.
        # We also eliminate the turn-off mas which makes no send for composite
        # populations.
        mass_table = mass_table[1:7, mass_table[0] == metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
260

Yannick Roehlly's avatar
Yannick Roehlly committed
261
262
263
264
        # Interpolate the mass table over the new age grid. We multiply per
        # 1000 because the time in Maraston files is given in Gyr.
        mass_table = interpolate.interp1d(mass_table[0] * 1000,
                                          mass_table)(age_grid)
Yannick Roehlly's avatar
Yannick Roehlly committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278

        # Remove the age column from the mass table
        mass_table = np.delete(mass_table, 0, 0)

        # Remove the metallicity column from the spec table
        spec_table = np.delete(spec_table, 1, 0)

        # Convert the wavelength from Å to nm
        spec_table[1] = spec_table[1] * 0.1

        # For all ages, the lambda grid is the same.
        lambda_grid = np.unique(spec_table[1])

        # Creation of the age vs lambda flux table
279
        tmp_list = []
Yannick Roehlly's avatar
Yannick Roehlly committed
280
281
282
283
        for wavelength in lambda_grid:
            [age_grid_orig, lambda_grid_orig, flux_orig] = \
                spec_table[:, spec_table[1, :] == wavelength]
            flux_orig = flux_orig * 10 * 1.e-7  # From erg/s^-1/Å to W/nm
284
            age_grid_orig *= 1000  # Gyr to Myr
Yannick Roehlly's avatar
Yannick Roehlly committed
285
286
287
            flux_regrid = interpolate.interp1d(age_grid_orig,
                                               flux_orig)(age_grid)

288
289
290
            tmp_list.append(flux_regrid)
        flux_age = np.array(tmp_list)

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        lambda_grid_resamp = np.around(np.logspace(np.log10(10000),
                                                   np.log10(160000), 50))
        argmin = np.argmin(10000.-lambda_grid > 0)-1
        flux_age_resamp = 10.**interpolate.interp1d(
                                    np.log10(lambda_grid[argmin:]),
                                    np.log10(flux_age[argmin:, :]),
                                    assume_sorted=True,
                                    axis=0)(np.log10(lambda_grid_resamp))

        lambda_grid = np.hstack([lambda_grid[:argmin+1], lambda_grid_resamp])
        flux_age = np.vstack([flux_age[:argmin+1, :], flux_age_resamp])

306
307
308
309
310
        # Use Z value for metallicity, not log([Z/H])
        metallicity = {-1.35: 0.001,
                       -0.33: 0.01,
                       0.0: 0.02,
                       0.35: 0.04}[metallicity]
Yannick Roehlly's avatar
Yannick Roehlly committed
311

312
313
        base.add_m2005(M2005(imf, metallicity, age_grid, lambda_grid,
                             mass_table, flux_age))
Yannick Roehlly's avatar
Yannick Roehlly committed
314
315


316
317
def build_bc2003(base, res):
    bc03_dir = os.path.join(os.path.dirname(__file__), 'bc03/')
318

319
320
    # Time grid (1 Myr to 14 Gyr with 1 Myr step)
    time_grid = np.arange(1, 14000)
321
    fine_time_grid = np.linspace(0.1, 13999, 139990)
322
323
324
325
326
327
328
329
330
331
332
333

    # Metallicities associated to each key
    metallicity = {
        "m22": 0.0001,
        "m32": 0.0004,
        "m42": 0.004,
        "m52": 0.008,
        "m62": 0.02,
        "m72": 0.05
    }

    for key, imf in itertools.product(metallicity, ["salp", "chab"]):
334
335
336
337
338
339
        ssp_filename = "{}bc2003_{}_{}_{}_ssp.ised_ASCII".format(bc03_dir, res,
                                                                 key, imf)
        color3_filename = "{}bc2003_lr_{}_{}_ssp.3color".format(bc03_dir, key,
                                                                imf)
        color4_filename = "{}bc2003_lr_{}_{}_ssp.4color".format(bc03_dir, key,
                                                                imf)
340

341
        print("Importing {}...".format(ssp_filename))
342
343
344
345
346

        # Read the desired information from the color files
        color_table = []
        color3_table = np.genfromtxt(color3_filename).transpose()
        color4_table = np.genfromtxt(color4_filename).transpose()
347
348
349
        color_table.append(color4_table[6])        # Mstar
        color_table.append(color4_table[7])        # Mgas
        color_table.append(10 ** color3_table[5])  # NLy
350
351
352
353
354

        color_table = np.array(color_table)

        ssp_time, ssp_wave, ssp_lumin = read_bc03_ssp(ssp_filename)

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        # Regrid the SSP data to the evenly spaced time grid. In doing so we
        # assume 10 bursts every 0.1 Myr over a period of 1 Myr in order to
        # capture short evolutionary phases.
        # The time grid starts after 0.1 Myr, so we assume the value is the same
        # as the first actual time step.
        fill_value = (color_table[:, 0], color_table[:, -1])
        color_table = interpolate.interp1d(ssp_time, color_table,
                                           fill_value=fill_value,
                                           bounds_error=False,
                                           assume_sorted=True)(fine_time_grid)
        color_table = np.mean(color_table.reshape(3, -1, 10), axis=-1)

        # We have to do the interpolation-averaging in several blocks as it is
        # a bit RAM intensive
        ssp_lumin_interp = np.empty((ssp_wave.size, time_grid.size))
        for i in range(0, ssp_wave.size, 100):
            fill_value = (ssp_lumin[i:i+100, 0], ssp_lumin[i:i+100, -1])
            ssp_interp = interpolate.interp1d(ssp_time, ssp_lumin[i:i+100, :],
                                              fill_value=fill_value,
                                              bounds_error=False,
                                              assume_sorted=True)(fine_time_grid)
            ssp_interp = ssp_interp.reshape(ssp_interp.shape[0], -1, 10)
            ssp_lumin_interp[i:i+100, :] = np.mean(ssp_interp, axis=-1)
378

379
380
381
382
383
384
385
386
        # To avoid the creation of waves when interpolating, we refine the grid
        # beyond 10 μm following a log scale in wavelength. The interpolation
        # is also done in log space as the spectrum is power-law-like
        ssp_wave_resamp = np.around(np.logspace(np.log10(10000),
                                                np.log10(160000), 50))
        argmin = np.argmin(10000.-ssp_wave > 0)-1
        ssp_lumin_resamp = 10.**interpolate.interp1d(
                                    np.log10(ssp_wave[argmin:]),
387
                                    np.log10(ssp_lumin_interp[argmin:, :]),
388
389
390
391
                                    assume_sorted=True,
                                    axis=0)(np.log10(ssp_wave_resamp))

        ssp_wave = np.hstack([ssp_wave[:argmin+1], ssp_wave_resamp])
392
393
        ssp_lumin = np.vstack([ssp_lumin_interp[:argmin+1, :],
                               ssp_lumin_resamp])
394

395
        base.add_bc03(BC03(
396
397
398
399
400
401
402
403
            imf,
            metallicity[key],
            time_grid,
            ssp_wave,
            color_table,
            ssp_lumin
        ))

404

405
def build_dale2014(base):
406
    models = []
407
408
409
    dale2014_dir = os.path.join(os.path.dirname(__file__), 'dale2014/')

    # Getting the alpha grid for the templates
410
    d14cal = np.genfromtxt(dale2014_dir + 'dhcal.dat')
411
412
413
    alpha_grid = d14cal[:, 1]

    # Getting the lambda grid for the templates and convert from microns to nm.
414
    first_template = np.genfromtxt(dale2014_dir + 'spectra.0.00AGN.dat')
415
416
    wave = first_template[:, 0] * 1E3

Médéric Boquien's avatar
Médéric Boquien committed
417
418
419
420
    # Getting the stellar emission and interpolate it at the same wavelength
    # grid
    stell_emission_file = np.genfromtxt(dale2014_dir +
                                        'stellar_SED_age13Gyr_tau10Gyr.spec')
421
    # A -> to nm
Médéric Boquien's avatar
Médéric Boquien committed
422
    wave_stell = stell_emission_file[:, 0] * 0.1
423
    # W/A -> W/nm
Médéric Boquien's avatar
Médéric Boquien committed
424
425
    stell_emission = stell_emission_file[:, 1] * 10
    stell_emission_interp = np.interp(wave, wave_stell, stell_emission)
426
427
428
429
430
431
432
433
434
435
436
437

    # The models are in nuFnu and contain stellar emission.
    # We convert this to W/nm and remove the stellar emission.

    # Emission from dust heated by SB
    fraction = 0.0
    filename = dale2014_dir + "spectra.0.00AGN.dat"
    print("Importing {}...".format(filename))
    datafile = open(filename)
    data = "".join(datafile.readlines())
    datafile.close()

438
    for al in range(1, len(alpha_grid)+1, 1):
Médéric Boquien's avatar
Médéric Boquien committed
439
440
441
        lumin_with_stell = np.genfromtxt(io.BytesIO(data.encode()),
                                         usecols=(al))
        lumin_with_stell = pow(10, lumin_with_stell) / wave
442
443
        constant = lumin_with_stell[7] / stell_emission_interp[7]
        lumin = lumin_with_stell - stell_emission_interp * constant
Médéric Boquien's avatar
Médéric Boquien committed
444
445
446
        lumin[lumin < 0] = 0
        lumin[wave < 2E3] = 0
        norm = np.trapz(lumin, x=wave)
447
        lumin /= norm
448

449
        models.append(Dale2014(fraction, alpha_grid[al-1], wave, lumin))
450
    # Emission from dust heated by AGN - Quasar template
451
    filename = dale2014_dir + "shi_agn.regridded.extended.dat"
452
453
    print("Importing {}...".format(filename))

454
455
456
457
    wave, lumin_quasar = np.genfromtxt(filename, unpack=True)
    wave *= 1e3
    lumin_quasar = 10**lumin_quasar / wave
    norm = np.trapz(lumin_quasar, x=wave)
458
    lumin_quasar /= norm
459

460
461
462
    models.append(Dale2014(1.0, 0.0, wave, lumin_quasar))

    base.add_dale2014(models)
463

464

465
def build_dl2007(base):
466
    models = []
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    dl2007_dir = os.path.join(os.path.dirname(__file__), 'dl2007/')

    qpah = {
        "00": 0.47,
        "10": 1.12,
        "20": 1.77,
        "30": 2.50,
        "40": 3.19,
        "50": 3.90,
        "60": 4.58
    }

    umaximum = ["1e3", "1e4", "1e5", "1e6"]
    uminimum = ["0.10", "0.15", "0.20", "0.30", "0.40", "0.50", "0.70",
                "0.80", "1.00", "1.20", "1.50", "2.00", "2.50", "3.00",
                "4.00", "5.00", "7.00", "8.00", "10.0", "12.0", "15.0",
                "20.0", "25.0"]

485
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
486
487
    MdMH = {"00": 0.0100, "10": 0.0100, "20": 0.0101, "30": 0.0102,
            "40": 0.0102, "50": 0.0103, "60": 0.0104}
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umaximum[0],
                                                                  umaximum[0],
                                                                  umaximum[0],
                                                                  "00"))
    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

503
504
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
505
506
507
508
509
510
511
512
513
514
515
516
517
518

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                     umin,
                                                                     umin,
                                                                     model)
            print("Importing {}...".format(filename))
            datafile = open(filename)
            data = "".join(datafile.readlines()[-1001:])
            datafile.close()
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]
519
520
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
521

522
            models.append(DL2007(qpah[model], umin, umin, wave, lumin))
523
524
525
526
527
528
529
530
531
532
533
534
535
            for umax in umaximum:
                filename = dl2007_dir + "U{}/U{}_{}_MW3.1_{}.txt".format(umin,
                                                                         umin,
                                                                         umax,
                                                                         model)
                print("Importing {}...".format(filename))
                datafile = open(filename)
                data = "".join(datafile.readlines()[-1001:])
                datafile.close()
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

536
537
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
538

539
540
                models.append(DL2007(qpah[model], umin, umax, wave, lumin))
    base.add_dl2007(models)
541
542


543
def build_dl2014(base):
544
    models = []
545
546
    dl2014_dir = os.path.join(os.path.dirname(__file__), 'dl2014/')

Médéric Boquien's avatar
Médéric Boquien committed
547
548
549
    qpah = {"000": 0.47, "010": 1.12, "020": 1.77, "030": 2.50, "040": 3.19,
            "050": 3.90, "060": 4.58, "070": 5.26, "080": 5.95, "090": 6.63,
            "100": 7.32}
550
551
552
553
554
555
556

    uminimum = ["0.100", "0.120", "0.150", "0.170", "0.200", "0.250", "0.300",
                "0.350", "0.400", "0.500", "0.600", "0.700", "0.800", "1.000",
                "1.200", "1.500", "1.700", "2.000", "2.500", "3.000", "3.500",
                "4.000", "5.000", "6.000", "7.000", "8.000", "10.00", "12.00",
                "15.00", "17.00", "20.00", "25.00", "30.00", "35.00", "40.00",
                "50.00"]
557

558
559
560
561
    alpha = ["1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8",
             "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7",
             "2.8", "2.9", "3.0"]

562
    # Mdust/MH used to retrieve the dust mass as models as given per atom of H
Médéric Boquien's avatar
Médéric Boquien committed
563
564
565
    MdMH = {"000": 0.0100, "010": 0.0100, "020": 0.0101, "030": 0.0102,
            "040": 0.0102, "050": 0.0103, "060": 0.0104, "070": 0.0105,
            "080": 0.0106, "090": 0.0107, "100": 0.0108}
566

567
568
569
570
571
572
573
574
575
576
577
578
579
    # Here we obtain the wavelength beforehand to avoid reading it each time.
    datafile = open(dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                    .format(uminimum[0], uminimum[0], "000"))

    data = "".join(datafile.readlines()[-1001:])
    datafile.close()

    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    # For some reason wavelengths are decreasing in the model files
    wave = wave[::-1]
    # We convert wavelengths from μm to nm
    wave *= 1000.

580
581
    # Conversion factor from Jy cm² sr¯¹ H¯¹ to W nm¯¹ (kg of H)¯¹
    conv = 4. * np.pi * 1e-30 / (cst.m_p+cst.m_e) * cst.c / (wave*wave) * 1e9
582
583
584
585
586
587
588
589
590
591
592
593

    for model in sorted(qpah.keys()):
        for umin in uminimum:
            filename = (dl2014_dir + "U{}_{}_MW3.1_{}/spec_1.0.dat"
                        .format(umin, umin, model))
            print("Importing {}...".format(filename))
            with open(filename) as datafile:
                data = "".join(datafile.readlines()[-1001:])
            lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
            # For some reason fluxes are decreasing in the model files
            lumin = lumin[::-1]

594
595
            # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
            lumin *= conv/MdMH[model]
596

597
            models.append(DL2014(qpah[model], umin, umin, 1.0, wave, lumin))
598
599
600
601
602
603
604
605
606
607
            for al in alpha:
                filename = (dl2014_dir + "U{}_1e7_MW3.1_{}/spec_{}.dat"
                            .format(umin, model, al))
                print("Importing {}...".format(filename))
                with open(filename) as datafile:
                    data = "".join(datafile.readlines()[-1001:])
                lumin = np.genfromtxt(io.BytesIO(data.encode()), usecols=(2))
                # For some reason fluxes are decreasing in the model files
                lumin = lumin[::-1]

608
609
                # Conversion from Jy cm² sr¯¹ H¯¹to W nm¯¹ (kg of dust)¯¹
                lumin *= conv/MdMH[model]
610

611
                models.append(DL2014(qpah[model], umin, 1e7, al, wave, lumin))
612

613
    base.add_dl2014(models)
614

615
def build_fritz2006(base):
616
    models = []
617
    fritz2006_dir = os.path.join(os.path.dirname(__file__), 'fritz2006/')
618

619
620
    # Parameters of Fritz+2006
    psy = [0.001, 10.100, 20.100, 30.100, 40.100, 50.100, 60.100, 70.100,
621
622
           80.100, 89.990]  # Viewing angle in degrees
    opening_angle = ["20", "40", "60"]  # Theta = 2*(90 - opening_angle)
623
624
625
    gamma = ["0.0", "2.0", "4.0", "6.0"]
    beta = ["-1.00", "-0.75", "-0.50", "-0.25", "0.00"]
    tau = ["0.1", "0.3", "0.6", "1.0", "2.0", "3.0", "6.0", "10.0"]
626
    r_ratio = ["10", "30", "60", "100", "150"]
627
628

    # Read and convert the wavelength
629
630
631
    datafile = open(fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot"
                    .format(opening_angle[0], gamma[0], beta[0], tau[0],
                            r_ratio[0]))
632
633
634
635
    data = "".join(datafile.readlines()[-178:])
    datafile.close()
    wave = np.genfromtxt(io.BytesIO(data.encode()), usecols=(0))
    wave *= 1e3
Médéric Boquien's avatar
Médéric Boquien committed
636
    # Number of wavelengths: 178; Number of comments lines: 28
637
638
639
    nskip = 28
    blocksize = 178

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    iter_params = ((oa, gam, be, ta, rm)
                   for oa in opening_angle
                   for gam in gamma
                   for be in beta
                   for ta in tau
                   for rm in r_ratio)

    for params in iter_params:
        filename = fritz2006_dir + "ct{}al{}be{}ta{}rm{}.tot".format(*params)
        print("Importing {}...".format(filename))
        try:
            datafile = open(filename)
        except IOError:
            continue
        data = datafile.readlines()
        datafile.close()

        for n in range(len(psy)):
            block = data[nskip + blocksize * n + 4 * (n + 1) - 1:
                         nskip + blocksize * (n+1) + 4 * (n + 1) - 1]
            lumin_therm, lumin_scatt, lumin_agn = np.genfromtxt(
                io.BytesIO("".join(block).encode()), usecols=(2, 3, 4),
                unpack=True)
            # Remove NaN
            lumin_therm = np.nan_to_num(lumin_therm)
            lumin_scatt = np.nan_to_num(lumin_scatt)
            lumin_agn = np.nan_to_num(lumin_agn)
            # Conversion from erg/s/microns to W/nm
            lumin_therm *= 1e-4
            lumin_scatt *= 1e-4
            lumin_agn *= 1e-4
            # Normalization of the lumin_therm to 1W
            norm = np.trapz(lumin_therm, x=wave)
673
674
675
            lumin_therm /= norm
            lumin_scatt /= norm
            lumin_agn /= norm
676

677
            models.append(Fritz2006(params[4], params[3], params[2],
678
                                         params[1], params[0], psy[n], wave,
Médéric Boquien's avatar
Médéric Boquien committed
679
                                         lumin_therm, lumin_scatt, lumin_agn))
680

681
    base.add_fritz2006(models)
682

683
def build_nebular(base):
684
685
    models_lines = []
    models_cont = []
686

687
688
689
    nebular_dir = os.path.join(os.path.dirname(__file__), 'nebular/')
    print("Importing {}...".format(nebular_dir + 'lines.dat'))
    lines = np.genfromtxt(nebular_dir + 'lines.dat')
690

691
692
693
    wave_lines = np.genfromtxt(nebular_dir + 'line_wavelengths.dat')
    print("Importing {}...".format(nebular_dir + 'continuum.dat'))
    cont = np.genfromtxt(nebular_dir + 'continuum.dat')
694

695
696
697
    # Convert wavelength from Å to nm
    wave_lines *= 0.1
    wave_cont = cont[:1600, 0] * 0.1
698

699
700
    # Get the list of metallicities
    metallicities = np.unique(lines[:, 1])
701

702
703
704
    # Keep only the fluxes
    lines = lines[:, 2:]
    cont = cont[:, 1:]
705

706
707
708
    # We select only models with ne=100. Other values could be included later
    lines = lines[:, 1::3]
    cont = cont[:, 1::3]
709

710
711
    # Convert lines to W and to a linear scale
    lines = 10**(lines-7)
712

713
714
715
    # Convert continuum to W/nm
    cont *= np.tile(1e-7 * cst.c * 1e9 / wave_cont**2,
                    metallicities.size)[:, np.newaxis]
716

717
718
719
720
721
722
723
    # Import lines
    for idx, metallicity in enumerate(metallicities):
        spectra = lines[idx::6, :]
        for logU, spectrum in zip(np.around(np.arange(-4., -.9, .1), 1),
                                  spectra.T):
            models_lines.append(NebularLines(metallicity, logU, wave_lines,
                                             spectrum))
724

725
726
727
728
729
730
731
    # Import continuum
    for idx, metallicity in enumerate(metallicities):
        spectra = cont[1600 * idx: 1600 * (idx+1), :]
        for logU, spectrum in zip(np.around(np.arange(-4., -.9, .1), 1),
                                  spectra.T):
            models_cont.append(NebularContinuum(metallicity, logU, wave_cont,
                                                spectrum))
732

733
    base.add_nebular_lines(models_lines)
734
    base.add_nebular_continuum(models_cont)
735

736

737
738
def build_schreiber2016(base):
    models = []
739
740
741
742
    schreiber2016_dir = os.path.join(os.path.dirname(__file__),
                                     'schreiber2016/')

    print("Importing {}...".format(schreiber2016_dir + 'g15_pah.fits'))
743
    pah = Table.read(schreiber2016_dir + 'g15_pah.fits')
744
    print("Importing {}...".format(schreiber2016_dir + 'g15_dust.fits'))
745
746
    dust = Table.read(schreiber2016_dir + 'g15_dust.fits')

747
    # Getting the lambda grid for the templates and convert from μm to nm.
748
    wave = dust['LAM'][0, 0, :].data * 1e3
749
750

    for td in np.arange(15., 100.):
751
        # Find the closest temperature in the model list of tdust
752
        tsed = np.argmin(np.absolute(dust['TDUST'][0].data-td))
753
754

        # The models are in νFν.  We convert this to W/nm.
755
756
        lumin_dust = dust['SED'][0, tsed, :].data / wave
        lumin_pah = pah['SED'][0, tsed, :].data / wave
757
758
759
760

        models.append(Schreiber2016(0, td, wave, lumin_dust))
        models.append(Schreiber2016(1, td, wave, lumin_pah))

761
762
    base.add_schreiber2016(models)

763

764
def build_base(bc03res='lr'):
765
766
767
768
769
770
    base = Database(writable=True)
    base.upgrade_base()

    print('#' * 78)
    print("1- Importing filters...\n")
    build_filters(base)
Médéric Boquien's avatar
Médéric Boquien committed
771
    build_filters_gazpar(base)
772
773
774
775
776
777
778
779
780
    print("\nDONE\n")
    print('#' * 78)

    print("2- Importing Maraston 2005 SSP\n")
    build_m2005(base)
    print("\nDONE\n")
    print('#' * 78)

    print("3- Importing Bruzual and Charlot 2003 SSP\n")
781
    build_bc2003(base, bc03res)
782
783
784
    print("\nDONE\n")
    print('#' * 78)

785
    print("4- Importing Draine and Li (2007) models\n")
786
787
788
789
    build_dl2007(base)
    print("\nDONE\n")
    print('#' * 78)

790
    print("5- Importing the updated Draine and Li (2007 models)\n")
791
792
793
794
    build_dl2014(base)
    print("\nDONE\n")
    print('#' * 78)

795
    print("6- Importing Fritz et al. (2006) models\n")
796
    build_fritz2006(base)
Yannick Roehlly's avatar
Yannick Roehlly committed
797
798
799
    print("\nDONE\n")
    print('#' * 78)

800
    print("7- Importing Dale et al (2014) templates\n")
801
802
803
    build_dale2014(base)
    print("\nDONE\n")
    print('#' * 78)
Médéric Boquien's avatar
Médéric Boquien committed
804

805
    print("8- Importing nebular lines and continuum\n")
806
    build_nebular(base)
807
808
    print("\nDONE\n")
    print('#' * 78)
809

810
811
812
813
814
    print("9- Importing Schreiber et al (2016) models\n")
    build_schreiber2016(base)
    print("\nDONE\n")
    print('#' * 78)
    
815
816
    base.session.close_all()

Yannick Roehlly's avatar
Yannick Roehlly committed
817
818
819

if __name__ == '__main__':
    build_base()