MAOPPY:
Modelization of the Adaptive Optics Psf in Python

Romain J.L.. FETICK
romain.fetick@lam.fr

July 15, 2024

Abstract

MAOPPY is a library written in Python. It stands for Modelization of the
Adaptive Optics PSF in Python. Its goal is to provide point-spread-function
(PSF) models for astronomy. Although different models are implemented, the
main one is Psfao. This model is adapted for adaptive optics corrected im-
ages, and has been described in the refereed paper [Fétick, R. et al., 2019]. This
document is a user manual on how to use MAOPPY and detailing the actual
implementation of Psfao in Python.

Figure 1: Simulation of three PSF using Maoppy from seeing limited (left) to diffraction
limited (right) and typical AO corrected (center)

mailto:romain.fetick@lam.fr

Section CONTENTS 2

Contents
I Installation 3
[.L1 Requirements 3
[.2 Imstallation using PIP 3
[.L3 Manual installation oL 3
[.3.1 Download the project folder 3
[.3.2 Add Maoppy to the Pythonpath 3
IT Understanding the Psfao model 5
I1.1 Where does the Psfao model come from? 5
I1.2 Main characteristics 5
I1.3 Review of the Psfao parameters)
I1.4 Notes on the numerical implementation 6
[1.4.1 Even arrays 6
[1.4.2 Energy normalisation at infinity 7
[1.4.3 Pixel centering o 7
IITHow to use MAOPPY 9
ITI.1 The "Instrument” class 9
IT1.2 Generate a PSF 9
III.3 Fit a PSEF 10

References 11

Section I INSTALLATION 3

I Installation

I.1 Requirements

MAOPPY has been written in Python 3. It requires the libraries numpy, scipy and

astropy . The matplotlib library is recommended to run examples and plot results,
although it is not mandatory to run the core functions.

I.2 Installation using PIP

Make sure you have previously installed PIP and then run the PIP command

pip install git+https://gitlab.lam.fr/lam-grd-public/maoppy.git@master
This command should have correctly installed the MAOPPY core package, however the
documentation, the "how-to" examples, the readme and the license files are discarded.
You may visit the website listed below if you want to have a look at them.

1.3 Manual installation

You may choose the manual installation if you don’t want to use PIP.

I[.3.1 Download the project folder

The library is available on the official gitlab repository of the Laboratoire d’Astro-
physique de Marseille, at the following url

https://gitlab.lam.fr /lam-grd-public/maoppy

A zip folder can be manually downloaded, or the project can be cloned using the follow-
ing GIT commands
cd my/folder/to/put/the/library/

git clone https://gitlab.lam.fr/lam-grd-public/maoppy

Specific releases of the code can be downloaded through the dedicated Releases
tab. It is recommended to download the latest release. By default the version of the
latest modification (commit) is downloaded, and not the latest release (tag X.Y.Z).
They can slightly differ if some work has been performed on the project since the latest
release. I will try to keep the latest release as close as possible to the latest modification.

1.3.2 Add Maoppy to the Pythonpath

Once the library has been downloaded, you need to add it to your PYTHONPATH in order
to be found by Python. Different methods exist according to your operating system and
development environment.

https://gitlab.lam.fr/lam-grd-public/maoppy

Section I INSTALLATION 4

Spyder environment (any OS)

1. Go to tools > manage PYTHONPATH > add path

2. Add the full path to your maoppy/ folder. Take care to add the path up to
maoppy/ included, but not to maoppy/maoppy/

3. Restart Spyder to take into account the new path

Windows

1. Go to Windows Parameters
2. Launch a new search for variable

3. Select Modify environment variables > Environment variables
4. In the list select PYTHONPATH and then modify

5. Add the full path to the maoppy/ folder

Linux

1. Open the .bashrc, for example with gedit gedit ~/.bashrc

2. At the end of the bashre file add the line
export PYTHONPATH=$PYTHONPATH:$path/to/maoppy

3. Save and close the bashre

4. From the terminal run source ~/.bashrc to take modifications into account

Temporary add to path (not recommended)

1. Open your Python interpreter

2. Run the python code import sys and sys.path.append("path/to/maoppy")

Section II UNDERSTANDING THE PSFAO MODEL 5

II Understanding the Psfao model

II.1 Where does the Psfao model come from?

The adaptive optics corrected PSEF model, called Psfao , is the main model of this li-
brary. It has been developed in order to describe accurately the long-exposure PSF of
adaptive optics systems for astronomy. A full mathematical description of the model can
be found in [Fétick, R. et al., 2019]. This paper also proves the adaptation of the PSF
model to the VLT instruments SPHERE/ZIMPOL and MUSE (Narrow Field Mode).
Other instruments have been successfully tested in [Beltramo-Martin et al., subm], such
as Keck AO, SOUL at LBT, CANARY at the WHT and GEMS/GSAOI at GEMINI.
The open access ArXiv version of these papers is available online.

II.2 Main characteristics

The main characteristics of the Psfao model are the following:

e telescope pupil diffraction taken into account (primary mirror aperture and sec-
ondary mirror occultation)

e telescope static phase aberrations taken into account (if they have been previously
measured and provided to the PSF model)

e the two PSF zones, AO corrected and turbulent halo, are well described
e an elliptic asymmetry (such as the Moffat) is possible

e the halo can be estimated out of the field of view, in order to get a robust photo-
metric accuracy, even on cropped or incomplete data

e manage undersampled PSF

I1.3 Review of the Psfao parameters

The Psfao model if made of 7 parameters. The two main parameters of the model are:

e 7o: the Fried parameter, scaling the strength of the turbulence. Higher Fried
parameter means lower turbulence. Must be strictly positive.

e A: the variance of the AO system correction, measuring the quality of the correc-
tion. Higher variance means lower quality. Must be positive (partial AO correc-
tion) or null (perfect AO correction).

The shape refining parameters are:

Section II UNDERSTANDING THE PSFAO MODEL 6

e (: the AO area constant. A typical value of 1072 has been found on SPHERE
Zimpol and MUSE instruments. Must be positive (partial AO correction) or null
(perfect AO correction).

e «: the Moffat frequency transition. It has a minor impact of the PSF shape
and can be fixed for many application cases. Typical values range from 1073 to
1. A typical value of 5 x 1072 has been found on SPHERE Zimpol and MUSE
instruments. Must be strictly positive.

e [3: the Moffat power law defining the decrease of the phase PSD. Typical values
range from 1.1 to 2.0. A typical value of 1.6 has been found on SPHERE Zimpol
and MUSE instruments. Must be strictly greater than 1.

The asymmetry parameters are:

e r: the squared-root ratio between the major and the minor axis of the Moffat, such
as a, = ar and a, = a/r. Equivalently a? = ooy, and r? = ag/oy. Fixing r =1
makes the PSF symmetric. Must be strictly positive.

e 0: the angle of the Moffat major axis with the horizontal axis. It has no importance
if the PSF is symmetric (r = 1). This parameter is not bounded.

Category ‘ Symbol ‘ Definition ‘ Bounds ‘ Typical ‘ Unit
MAIN To Fried parameter >0 5—30 cm
A AQO variance >0 0-—10 rad?
REFINE C AQO area constant >0 0—10"? | rad? m?
o Moffat transition >0 10%—-1| m!
15} Moffat power law > 1 1.1—-2.0 —
ASYM r axis ratio >0 0.5—2 —
0 axis angle no 0—27 rad

Table 1: Summary of the 7 parameters of the Psfao model. Bounds must always be
satisfied. Typical values are only an indication and can vary depending on the instrument
or the atmospheric conditions. Remember that the Moffat parameters are defined in the
electromagnetic phase power spectral density plane, and not in the usual PSF focal
plane, so their usage might be slightly counter-intuitive at first glance.

II.4 Notes on the numerical implementation
I1.4.1 Even arrays

The sizes of PSF arrays must be an even number of pixels.

Section II UNDERSTANDING THE PSFAO MODEL 7

—— 1024x1024 (E_fov=0.99)
256x256 (E_fov=0.90)

= = = =
o o o o
} 5 L L

PSF (normalized up to infinity)

=
o
4

108 . : , , ;
—-512 —-256 -128 0 128 256 512
Radiux [pix]

Figure 2: PSF energy normalisation at infinity. The same PSF is represented, computed
on a 1024 x 1024 pixels array (blue) or on a reduced 256 x 256 pixels array (orange).
The energy in the numerical field of view is £ = 0.99 for the big array and £ = 0.90 for
the small array. The two PSF match on their common field of view, the only difference
is visible at the borders of the small one due to numerical precision.

I1.4.2 Energy normalisation at infinity

The PSF is normalised in energy at infinity. It means that its sum is 1 for an infinite
size array. In practice, for finite size arrays, the energy is strictly smaller than one and
depends on the array size. However the value of the PSF at each pixel does not depend
on the size of the array. Note that minor differences might appear at the edges of smaller
arrays due to numerical precision. See figure 2.

I1.4.3 Pixel centering

For PSF sampled at least at the Shannon-Nyquist frequency (s > 2) the center position
is directly N/2 with N the length of the array in pixels.

For PSF sampled below the Shannon-Nyquist frequency (s < 2), MAOPPY performs
an internal oversampling in order to safely compute Fourier transforms. The array
size is thus multiplied by an integer k. This integer is available through the function
oversample of the module maoppy.psfmodel . It can be called such as

from maoppy. psfmodel import oversample

s = 0.4 # define here your sampling

s = 2.3 # works also with oversampled PSF (then k=1)
ks ,k = oversample(s)

Section II UNDERSTANDING THE PSFAO MODEL 8

Oversampled case (N=6, s>2)

o | 12 [2 | 3 | a4 | s5 | (k1)
Center=N/2
Center=k N/2
Center= N/2 —(k-1)/(2k)

Undersampled case (N=6, s=2/3)

L o [+ | 2 | s [a | 5 |

I I I E I I |
Center=k N/2
> binning
Lo [2 | 2 | '3 | 4 | 5 |

Center= N/2 - (k-1)/{2k)

Figure 3: Definition of the numerical center of the PSF, here in the case of N = 6
pixels large array. The oversampling factor £ > 1 holds for PSF sampled under the
Shannon-Nyquist frequency (s < 2). The intermediate array is computed internally by
Psfao and is not visible to the user. For oversampled PSFs, all centering definitions
are equivalent since k = 1.

It returns k times the sampling, and k. Once k has been retrieved, the actual center of
the PSF given by Psfao is
N k-t)
T % (
Note that this formula is still valid for oversampled PSF, since k = 1 leads to the previous
formula ¢ = N/2. The detailed explanation of internal oversampling is given on Fig. 3.

Section III HOW TO USE MAOPPY 9

III How to use MAOPPY

The example/ folder of MAOPPY gives example scripts to start to use the library.
You may want to have a look at it. The section below provides some details about these
scripts.

III.1 The "Instrument" class

In order to work, the Psfao model requires to be linked to an Instrument instance.
The Instrument class contains all the information about the telescope (diameter D,
central occultation occ), the AO system (number of actuators Nact) and the in-
strument (resolution_rad, resolution_mas , filters). All these attributes can be
accessed by the user.

So far only the instruments zimpol and muse_nfm have been implemented, but
other ones can be defined by the user. Please contact me if you want me to add a new
instrument to the library. The example below shows the main characteristics of the
instruments zimpol and muse_nfm.

from maoppy.instrument import muse nfm, zimpol

print (muse_nfm) # shows info on muse nfm
print (zimpol) # shows info on zimpol

The method samp() gives the sampling of the instrument at a given wavelength

wvl = 600xle—9 # wavelength [m)]
samp = muse nfm.samp(wvl) # sampling for the given wvl

The instruments can allow spatial binning to adapt to binned images

zimpol.binning = 2
print (zimpol) # the actual resolution has been modified

I11.2 Generate a PSF

The class Psfao and the instance muse_nfm (of the class Instrument) are imported
from MAOPPY. We also define the array length in pixels.

from maoppy. psfmodel import Psfao
from maoppy.instrument import muse nfm

Npix = 128 # pixel size of PSF

We define the sampling at which we want to generate the PSF. For a given instrument,
the sampling is given by the observing wavelength. We use the muse nfm.samp()
function to get the sampling of MUSE NFM at the observation wavelength. Here we
choose a wavelength of 600 nm.

Section III HOW TO USE MAOPPY 10

wvl = 600xle—9 # wavelength [m)]
samp = muse_nfm.samp(wvl) # sampling for the given wvl

Then, the Psfao instance is created. It requires the tuple (Npix,Npix) to define
its (X,Y) shape. The instrument is given through the mandatory keyword system. And
the sampling is given through the mandatory keyword samp . The instance of Psfao

is called Pmodel in this example.

Pmodel = Psfao ((Npix, Npix), system=muse_nfm , samp=samp)

The instance of Psfao has been initialised and is now ready to be used. A PSF can
then be generated for a given set of parameters. Let’s define a set of these parameters.

r0 = 0.15 # Fried parameter [m]

bck = le—5 # background [rad2 m?2]
amp = 5.0 # Moffat amplitude [rad2]
alpha = 0.1 # Moffat alpha [1/m]
ratio = 1.2 # alpha_x/alpha_y

theta = np.pi/4 # rotation angle
beta = 1.6 # Moffat beta power law

param = [r0,bck ,amp,alpha ratio ,theta ,beta]

The vector of parameters can be used to generate the PSF (frequent). Similarly you
may want the OTF (less frequent) or the phase PSD (rare). Note that the OTF is not
available for undersampled (samp<2) data, it is the case in this example. The dx and

dy keywords are optional floats to shift the PSF and the OTF (in pixels).

psf = Pmodel (param ,dx=0,dy=0) # the PSF
#otf = Pmodel. otf (param ,dx=0,dy=0) # the OIF (not available if samp<2)
#psd ,integral = Pmodel. psd (param) # the PSD and its integral up to infinity

The PSF can be plotted with matplotlib .

import matplotlib.pyplot as plt
import numpy as np

print (’PSF energy is,%.3f %np .sum(psf))

returns 0.976

the PSF energy is normalised at infinity (for photometric robustness)
increase Npix to retrieve more energy in the field of view

plt.figure (1)

plt.clf ()

plt . pcolormesh (np.log (psf))
plt.axis(’image’)

I11.3 Fit a PSF

The MAOPPY library also provides a PSF fitting method, called psffit . It fits a star
in an image with a PSF model, and returns the PSF parameters, the estimated flux and

Section REFERENCES 11

background of the image.

import numpy as np

from maoppy.psfmodel import Psfao
from maoppy.instrument import muse nfm
from maoppy. psffit import psffit

Read your PSF image
image =

Define sampling at the observing wavelength
wvl = 600x1e—9
samp = muse_nfm.samp (wvl)

Define pixel weights for fitting
w = np.ones_ like (image) # homogeneous weighting

var_photon = imagex*(image>0) # if image counts in electron
var_ron = muse_ nfm.ronx*2
w = 1/np.sqrt(var_photontvar_ron) # SNR weighting

w([123,456] = 0 # possibly remove some aberrant pixels

Define the guess parameters for fitting
guess = [...] # see ’param’ in the previous example

Perform fitting
psfmodel = Psfao(image.shape, system=muse_ nfm, samp=samp)
out = psffit (image, psfmodel , guess , weights=w)

Get flux, background and fitted PSF
flux_ fit , bck_fit = out.flux_bck
fitao = flux_fitxout.psf + bck_fit

References

[Beltramo-Martin et al., subm| Beltramo-Martin, O., Fétick, R., Neichel, B., and Fusco,
T. (subm). Exhaustive demonstration of an analytical point spread function model
for adaptive-optics assisted optical and near infrared instruments. Astronomy and
Astrophysics.

[Fétick, R. et al., 2019] Fétick, R., Fusco, T., Neichel, B., Mugnier, L. M., Beltramo-
Martin, O., Bonnefois, A., Petit, C., Milli, J., Vernet, J., Oberti, S., and Bacon, R.
(2019). Physics-based model of the adaptive-optics-corrected point spread function -
applications to the sphere/zimpol and muse instruments. A&A, 628:A99.

	Installation
	Requirements
	Installation using PIP
	Manual installation
	Download the project folder
	Add Maoppy to the Pythonpath

	Understanding the Psfao model
	Where does the Psfao model come from?
	Main characteristics
	Review of the Psfao parameters
	Notes on the numerical implementation
	Even arrays
	Energy normalisation at infinity
	Pixel centering

	How to use MAOPPY
	The "Instrument" class
	Generate a PSF
	Fit a PSF

	References

