Skip to content
Snippets Groups Projects
Commit a79a6b5f authored by FETICK Romain's avatar FETICK Romain
Browse files

Add Psfao model

parent 270390ac
No related branches found
No related tags found
No related merge requests found
......@@ -55,6 +55,8 @@ class Instrument(object):
self.ron = ron
self.binning = 1
self.name = "(unamed)"
def __repr__(self):
s = "PAOMPY Instrument\n"
s += "----------------------------\n"
......@@ -111,6 +113,8 @@ class Instrument(object):
ZIMPOL = Instrument(D=8.,occ=0.14,res=30*1e-6/1768.,gain=10.5,ron=20.,Nact=40)
ZIMPOL.filters["V"] = (554*1e-9, 80.6*1e-9)
ZIMPOL.filters["N_R"] = (645.9*1e-9, 56.7*1e-9)
ZIMPOL.name = "VLT SPHERE/ZIMPOL"
MUSE = Instrument(D=8.,occ=0.14,res=237.15*1e-6/1980.,gain=5.,ron=15.,Nact=39)
MUSE.name = "VLT MUSE"
......@@ -6,3 +6,573 @@ Created on Mon May 27 17:31:18 2019
@author: rfetick
"""
import numpy as np
from scipy.optimize import least_squares
from astropy.io import fits
import time
from numpy.fft import fft2, fftshift, ifft2
from functools import lru_cache
from paompy.config import _EPSILON
from paompy.utils import binning
#%% FITTING FUNCTION
def lsq_flux_bck(model, data, weights, background=True, positive_bck=False):
"""Compute the analytical least-square solution for flux and background
LS = SUM_pixels { weights*(flux*model + bck - data)² }
Parameters
----------
model: numpy.ndarray
data: numpy.ndarray
weights: numpy.ndarray
Keywords
--------
background: bool
Activate/inactivate background (activated by default:True)
positive_bck : bool
Makes background positive (default:False)
"""
ws = np.sum(weights)
mws = np.sum(model * weights)
mwds = np.sum(model * weights * data)
m2ws = np.sum(weights * (model ** 2))
wds = np.sum(weights * data)
if background:
delta = mws ** 2 - ws * m2ws
amp = 1. / delta * (mws * wds - ws * mwds)
bck = 1. / delta * (-m2ws * wds + mws * mwds)
else:
amp = mwds / m2ws
bck = 0.0
if bck<0 and positive_bck: #re-implement above equation
amp = mwds / m2ws
bck = 0.0
return amp, bck
def psffit(psf,Model,x0,weights=None,dxdy=(0.,0.),flux_bck=(True,True),
positive_bck=False,fixed=None,**kwargs):
"""Fit a PSF with a parametric model solving the least-square problem
epsilon(x) = SUM_pixel { weights * (amp * Model(x) + bck - psf)² }
Parameters
----------
psf : numpy.ndarray
The experimental image to be fitted
Model : class
The class representing the fitting model
x0 : tuple, list, numpy.ndarray
Initial guess for parameters
weights : numpy.ndarray
Least-square weighting matrix (same size as `psf`)
Default: uniform weighting
dxdy : tuple of two floats
Eventual guess on PSF shifting
flux_bck : tuple of two bool
Only background can be activate/inactivated
Flux is always activated (sorry!)
positive_bck : bool
Force background to be positive or null
fixed : numpy.ndarray
Fix some parameters to their initial value (default: None)
**kwargs :
All keywords used to instantiate your `Model`
Returns
-------
out.x : numpy.array
Parameters at optimum
.dxdy : tuple of 2 floats
PSF shift at optimum
.flux_bck : tuple of two floats
Estimated image flux and background
.psf : numpy.ndarray (dim=2)
Image of the PSF model at optimum
.success : bool
Minimization success
.status : int
Minimization status (see scipy doc)
.message : string
Human readable minimization status
.active_mask : numpy.array
Saturated bounds
.nfev : int
Number of function evaluations
.cost : float
Value of cost function at optimum
"""
Model_inst = Model(np.shape(psf),**kwargs)
if weights is None:
weights = np.ones_like(psf)
elif len(psf)!=len(weights):
raise ValueError("Keyword `weights` must have same number of elements as `psf`")
sqW = np.sqrt(weights)
class CostClass(object):
def __init__(self):
self.iter = 0
def __call__(self,y):
if (self.iter%3) == 0:
print("-",end="")
self.iter += 1
x, dxdy = mini2input(y)
m = Model_inst(x,dx=dxdy[0],dy=dxdy[1])
amp, bck = lsq_flux_bck(m, psf, weights, background=flux_bck[1], positive_bck=positive_bck)
return np.reshape(sqW * (amp * m + bck - psf), np.size(psf))
cost = CostClass()
if fixed is not None:
if len(fixed)!=len(x0):
raise ValueError("When defined, `fixed` must be same size as `x0`")
FREE = [not fixed[i] for i in range(len(fixed))]
INDFREE = np.where(FREE)[0]
def input2mini(x,dxdy):
# Transform user parameters to minimizer parameters
if fixed is None:
xfree = x
else:
xfree = np.take(x,INDFREE)
return np.concatenate((xfree,dxdy))
def mini2input(y):
# Transform minimizer parameters to user parameters
if fixed is None:
xall = y[0:-2]
else:
xall = np.copy(x0)
for i in range(len(y)-2):
xall[INDFREE[i]] = y[i]
return (xall,y[-2:])
def get_bound(inst):
b_low = inst.bounds[0]
if fixed is not None:
b_low = np.take(b_low,INDFREE)
b_low = np.concatenate((b_low,[-np.inf,-np.inf]))
b_up = inst.bounds[1]
if fixed is not None:
b_up = np.take(b_up,INDFREE)
b_up = np.concatenate((b_up,[np.inf,np.inf]))
return (b_low,b_up)
result = least_squares(cost, input2mini(x0,dxdy), bounds=get_bound(Model_inst))
print("") #finish line of "-"
result.x, result.dxdy = mini2input(result.x) #split output between x and dxdy
m = Model_inst(result.x,dx=result.dxdy[0],dy=result.dxdy[1])
amp, bck = lsq_flux_bck(m, psf, weights, background=flux_bck[1], positive_bck=positive_bck)
result.flux_bck = (amp,bck)
result.psf = m
return result
#%% CLASS PARAMETRIC PSF AND ITS SUBCLASSES
class ParametricPSF(object):
"""Super-class defining parametric PSFs
Not to be instantiated, only serves as a referent for subclasses
"""
def __init__(self,Npix):
"""
Parameters
----------
Npix : tuple of two elements
Model X and Y pixel size when called
"""
if type(Npix)!=tuple:
raise TypeError("Argument `Npix` must be a tuple")
self.Npix = Npix
self.bounds = (-np.inf,np.inf)
def __repr__(self):
return "ParametricPSF of size (%u,%u)"%self.Npix
def __call__(self,*args,**kwargs):
raise ValueError("ParametricPSF is not made to be instantiated. Better use its subclasses")
def otf(self,*args,**kwargs):
"""Return the Optical Transfer Function (OTF)"""
psf = self.__call__(args,kwargs)
return fftshift(fft2(psf))
def mtf(self,*args,**kwargs):
"""Return the Modulation Transfer Function (MTF)"""
return np.abs(self.otf(args,kwargs))
def tofits(self,param,filename,*args,keys=None,keys_comment=None,**kwargs):
psf = self.__call__(param,*args,**kwargs)
hdr = self._getfitshdr(param,keys=keys,keys_comment=keys_comment)
hdu = fits.PrimaryHDU(psf, hdr)
hdu.writeto(filename, overwrite=True)
def _getfitshdr(self,param,keys=None,keys_comment=None):
if keys is None:
keys = ["PARAM %u"%(i+1) for i in range(len(param))]
if len(keys)!=len(param):
raise ValueError("When defined, `keys` must be same size as `param`")
if keys_comment is not None:
if len(keys_comment)!=len(param):
raise ValueError("When defined, `keys_comment` must be same size as `param`")
hdr = fits.Header()
hdr["HIERARCH ORIGIN"] = "PAOMPY automatic header"
hdr["HIERARCH CREATION"] = (time.ctime(),"Date of file creation")
for i in range(len(param)):
if keys_comment is None:
hdr["HIERARCH PARAM "+keys[i]] = param[i]
else:
hdr["HIERARCH PARAM "+keys[i]] = (param[i],keys_comment[i])
return hdr
class ConstantPSF(ParametricPSF):
"""Create a constant PSF, given as a 2D image, using ParametricPSF formalism
With such a formalism, a constant PSF is just a particular case of a parametric PSF
"""
def __init__(self,image_psf):
super().__init__(np.shape(image_psf))
self.image_psf = image_psf
self.bounds = ()
def __call__(self,*args,**kwargs):
return self.image_psf
def moffat(XY, param, norm=None):
"""
Compute a Moffat function on a meshgrid
moff = A * Enorm * (1+u)^(-beta)
with `u` the quadratic coordinates in the shifted and rotated frame
Parameters
----------
XY : numpy.ndarray (dim=2)
The (X,Y) meshgrid with X = XY[0] and Y = XY[1]
param : list, tuple, numpy.ndarray (len=7)
param[0] - Amplitude
param[1] - Alpha X
param[2] - Alpha Y
param[3] - Theta
param[4] - Beta
param[5] - Center X
param[6] - Center Y
Keywords
--------
norm : None, np.inf, float (>0), int (>0)
Radius for energy normalization
None - No energy normalization
Enorm = 1.0
np.inf - Total energy normalization (on the whole X-Y plane)
Enorm = (beta-1)/(pi*ax*ay)
float,int - Energy normalization up to the radius defined by this value
Enorm = (beta-1)/(pi*ax*ay)*(1-(1+(R**2)/(ax*ay))**(1-beta))
Returns
-------
The 2D Moffat array
"""
if len(param)!=7:
raise ValueError("Parameter `param` must contain exactly 7 elements, but input has %u elements"%len(param))
c = np.cos(param[3])
s = np.sin(param[3])
s2 = np.sin(2.0 * param[3])
Rxx = (c / param[1]) ** 2 + (s / param[2]) ** 2
Ryy = (c / param[2]) ** 2 + (s / param[1]) ** 2
Rxy = s2 / param[2] ** 2 - s2 / param[1] ** 2
u = Rxx * (XY[0]-param[5])**2 + Rxy * (XY[0]-param[5]) * (XY[1]-param[6]) + Ryy * (XY[1]-param[6])**2
if norm is None:
Enorm = 1
elif norm == np.inf:
if param[4]<=1:
raise ValueError("Cannot compute Moffat energy for param[4]<=1")
Enorm = (param[4]-1) / (np.pi*param[1]*param[2])
else:
if param[4]==1:
raise ValueError("Energy computation for param[4]=1.0 not implemented yet. Sorry!")
Enorm = (param[4]-1) / (np.pi*param[1]*param[2])
Enorm = Enorm / (1 - (1 + (norm**2) / (param[1]*param[2]))**(1-param[4]))
return Enorm * param[0] * (1. + u) ** (-param[4])
class Moffat(ParametricPSF):
def __init__(self,Npix,norm=np.inf):
#super(ParametricPSF,self).__init__(Npix)
self.Npix = Npix
self.norm = norm
bounds_down = [_EPSILON,_EPSILON,-np.inf,1+_EPSILON]
bounds_up = [np.inf for i in range(4)]
self.bounds = (bounds_down,bounds_up)
@lru_cache(maxsize=5)
def _XY(self,Npix):
YX = np.mgrid[0:Npix[0],0:Npix[1]]
YX[1] = YX[1] - Npix[0]/2
YX[0] = YX[0] - Npix[1]/2
return YX
def __call__(self,x,dx=0,dy=0):
"""
Parameters
----------
x : list, tuple, numpy.ndarray (len=4)
x[0] - Alpha X
x[1] - Alpha Y
x[2] - Theta
x[3] - Beta
"""
y = np.concatenate(([1],x,[dx,dy]))
return moffat(self._XY(self.Npix),y,norm=self.norm)
def tofits(self,param,filename,*args,keys=["ALPHA_X","ALPHA_Y","THETA","BETA"],**kwargs):
super(Moffat,self).tofits(param,filename,*args,keys=keys,**kwargs)
class Psfao(ParametricPSF):
"""PSF model based on a parametrization of the phase PSD
See documentation of methods "__init__" and "__call__"
"""
def __init__(self,Npix,system=None,Lext=10.,samp=None,symmetric=False,diffotf=True):
"""
Parameters
----------
Npix : tuple
Size of output PSF
system : OpticalSystem
Optical system for this PSF
samp : float
Sampling at the observation wavelength
Lext : float
Von-Karman external scale (default = 10 m)
Useless if Fao >> 1/Lext
diffotf : bool
Enable/disable diffraction OTF for PSF computation
(default=True)
"""
#super(ParametricPSF,self).__init__(Npix)
if not (type(Npix) in [tuple,list,np.ndarray]):
raise ValueError("Npix must be a tuple, list or numpy.ndarray")
if len(Npix)!=2:
raise ValueError("Npix must be of length = 2")
if (Npix[0]%2) or (Npix[1]%2):
raise ValueError("Each Npix component must be even")
self.Npix = Npix
if system is None:
raise ValueError("Keyword `system` must be defined")
if samp is None:
raise ValueError("Keyword `samp` must be defined")
self.system = system
self.Lext = Lext
self.samp = samp
self.symmetric = symmetric
self.diffotf = diffotf
@property
def symmetric(self):
return self._symmetric
@symmetric.setter
def symmetric(self,value):
self._symmetric = value
if not value:
bounds_down = [_EPSILON,0,_EPSILON,_EPSILON,_EPSILON,-np.inf,1+_EPSILON]
bounds_up = [np.inf for i in range(7)]
else:
bounds_down = [_EPSILON,0,_EPSILON,_EPSILON,1+_EPSILON]
bounds_up = [np.inf for i in range(5)]
self.bounds = (bounds_down,bounds_up)
@property
def samp(self):
return self._samp
@samp.setter
def samp(self,value):
# Manage cases of undersampling
self._samp = value
if value >=2:
self._samp_num = value
self._k = 1
else:
self._k = int(np.ceil(2.0/value))
self._samp_num = self._k * value
@lru_cache(maxsize=2)
def _freq_array(self,Nx,Ny,samp,D):
"""
Returns
-------
tab - numpy.array (dim=3)
3D array of frequencies [1/m]
"""
pix2freq = 1.0/(D*samp)
f2D = np.mgrid[0:Nx, 0:Ny].astype(float)
#null frequency at [Nx//2,Ny//2] according to numpy fft convention
f2D[0] -= Nx//2
f2D[1] -= Ny//2
return f2D * pix2freq
@lru_cache(maxsize=2)
def _shift_array(self,Nx,Ny):
Y, X = np.mgrid[0:Nx,0:Ny].astype(float)
X = (X-Nx/2) * 2*np.pi*1j/Nx
Y = (Y-Ny/2) * 2*np.pi*1j/Ny
return X, Y
@lru_cache(maxsize=5)
def _dlFTO(self,Nx,Ny,pupfct,samp):
# samp as a tuple is not ready yet, don't use it
if type(samp)==tuple:
dlFTO = np.zeros((Nx,Ny,len(samp)))
for i in range(len(samp)):
dlFTO[...,i] = self._dlFTO(Nx,Ny,pupfct, samp[i])
return np.mean(dlFTO,axis=2)
NpupX = np.ceil(Nx/samp)
NpupY = np.ceil(Ny/samp)
tab = np.zeros((Nx, Ny), dtype=np.complex)
tab[0:int(NpupX), 0:int(NpupY)] = pupfct((NpupX,NpupY),samp=samp)
return fftshift(abs(ifft2(abs(fft2(tab)) ** 2)) / np.sum(tab))
def psd(self,x0):
"""Compute the PSD model from parameters
PSD is given in [rad²/f²] = [rad² m²]
Parameters
----------
x0 : numpy.array (dim=1), tuple, list
See __call__ for more details
Returns
-------
psd : numpy.array (dim=2)
"""
if len(x0)==7:
x = x0
elif len(x0)==5:
x = np.concatenate((x0[0:4],[x0[3],0],x0[4:]))
else:
raise ValueError("Wrong size of x0")
f2D = self._freq_array(self.Npix[0]*self._k,self.Npix[1]*self._k,self._samp_num,self.system.D)
F2 = f2D[0] ** 2. + f2D[1] ** 2.
Fao = self.system.Nact/(2.0*self.system.D)
PSD = 0.0229* x[0]**(-5./3.) * ((1. / self.Lext**2.) + F2)**(-11./6.)
PSD *= (F2 >= Fao**2.)
param = np.concatenate((x[2:],[0,0]))
PSD += (F2 < Fao**2.) * np.abs(x[1] + moffat(f2D,param,norm=Fao))
# Set PSD = 0 at null frequency (according to numpy fft convention)
PSD[self.Npix[0]//2,self.Npix[1]//2] = 0.0
return PSD
def otf(self,x0,dx=0,dy=0,_caller='user'):
"""
See __call__ for input arguments
Warning: result of otf will be unconsistent if undersampled!!!
This issue is solved with oversampling + binning in __call__ but not here
For the moment, the `_caller` keyword prevents user to misuse otf
"""
if (self._k > 1) and (_caller != 'self'):
raise ValueError("Cannot call `Psfao.otf(...)` when undersampled (functionality not implemented yet)")
PSD = self.psd(x0)
L = self.system.D * self._samp_num
Bg = fft2(fftshift(PSD)) / L ** 2
Dphi = fftshift(np.real(2 * (Bg[0, 0] - Bg)))
if self.diffotf:
dlFTO = self._dlFTO(self.Npix[0]*self._k,self.Npix[1]*self._k,
self.system.pupil, self._samp_num)
else:
dlFTO = 1.
X, Y = self._shift_array(self.Npix[0]*self._k,self.Npix[1]*self._k)
return np.exp(-Dphi/2.)*dlFTO*np.exp(X*dx + Y*dy)
def __call__(self,x0,dx=0,dy=0):
"""
Parameters
----------
x0 : numpy.array (dim=1), tuple, list
x[0] - Fried parameter r0 [m]
x[1] - PSD corrected area background C [rad² m²]
x[2] - PSD corrected area phase variance A [rad²]
x[3] - PSD alpha X [1/m]
x[4] - PSD alpha Y [1/m] (not defined in symmetric case)
x[5] - PSD theta [rad] (not defined in symmetric case)
x[6] - PSD beta power law (becomes x[4] in symmetric case)
dx : float
PSF X shifting [pix] (default = 0)
dy : float
PSF Y shifting [pix] (default = 0)
Returns
-------
tab : numpy.ndarray (dim=2)
The PSF computed for the given parameters
Note
----
The PSD integral on the corrected area is x[2]+x[1]*PI*fao²
"""
out = np.real(fftshift(ifft2(fftshift(self.otf(x0,dx=dx,dy=dy,_caller='self')))))
out = out/out.sum() # ensure unit energy on the field of view
if self._k==1:
return out
else:
return binning(out,int(self._k))
def tofits(self,param,filename,*args,keys=None,**kwargs):
if keys is None:
if len(param)==5:
keys = ["R0","CST","SIGMA2","ALPHA","BETA"]
keys_comment = ["Fried parameter [m]",
"PSD AO area constant C [rad2]",
"PSD AO area Moffat variance A [rad2]",
"PSD AO area Moffat alpha [1/m]",
"PSD AO area Moffat beta"]
else: # if not 5, then equals 7
keys = ["R0","CST","SIGMA2","ALPHA_X","ALPHA_Y","THETA","BETA"]
keys_comment = ["Fried parameter [m]",
"PSD AO area constant C [rad2]",
"PSD AO area Moffat variance A [rad2]",
"PSD AO area Moffat alpha X [1/m]",
"PSD AO area Moffat alpha Y [1/m]",
"PSD AO area Moffat theta [rad]",
"PSD AO area Moffat beta"]
# redefine tofits() because extra hdr is required
psf = self.__call__(param,*args,**kwargs)
hdr = self._getfitshdr(param,keys=keys,keys_comment=keys_comment)
hdr["HIERARCH SYSTEM"] = (self.system.name,"System name")
hdr["HIERARCH SAMP"] = (self.samp,"Sampling (eg. 2 for Shannon)")
hdr["HIERARCH LEXT"] = (self.Lext,"Von-Karman outer scale")
hdr["HIERARCH DIFFOTF"] = (self.diffotf,"Is diffraction OTF enabled")
hdu = fits.PrimaryHDU(psf, hdr)
hdu.writeto(filename, overwrite=True)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment